164 research outputs found

    Omnidirectional Stereo Vision for Autonomous Vehicles

    Get PDF
    Environment perception with cameras is an important requirement for many applications for autonomous vehicles and robots. This work presents a stereoscopic omnidirectional camera system for autonomous vehicles which resolves the problem of a limited field of view and provides a 360° panoramic view of the environment. We present a new projection model for these cameras and show that the camera setup overcomes major drawbacks of traditional perspective cameras in many applications

    Efficient generic calibration method for general cameras with single centre of projection

    Get PDF
    Generic camera calibration is a non-parametric calibration technique that is applicable to any type of vision sensor. However, the standard generic calibration method was developed with the goal of generality and it is therefore sub-optimal for the common case of cameras with a single centre of projection (e.g. pinhole, fisheye, hyperboloidal catadioptric). This paper proposes novel improvements to the standard generic calibration method for central cameras that reduce its complexity, and improve its accuracy and robustness. Improvements are achieved by taking advantage of the geometric constraints resulting from a single centre of projection. Input data for the algorithm is acquired using active grids, the performance of which is characterised. A new linear estimation stage to the generic algorithm is proposed incorporating classical pinhole calibration techniques, and it is shown to be significantly more accurate than the linear estimation stage of the standard method. A linear method for pose estimation is also proposed and evaluated against the existing polynomial method. Distortion correction and motion reconstruction experiments are conducted with real data for a hyperboloidal catadioptric sensor for both the standard and proposed methods. Results show the accuracy and robustness of the proposed method to be superior to those of the standard method

    04251 -- Imaging Beyond the Pinhole Camera

    Get PDF
    From 13.06.04 to 18.06.04, the Dagstuhl Seminar 04251 ``Imaging Beyond the Pin-hole Camera. 12th Seminar on Theoretical Foundations of Computer Vision\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    The flow of baseline estimation using a single omnidirectional camera

    Get PDF
    Baseline is a distance between two cameras, but we cannot get information from a single camera. Baseline is one of the important parameters to find the depth of objects in stereo image triangulation. The flow of baseline is produced by moving the camera in horizontal axis from its original location. Using baseline estimation, we can determined the depth of an object by using only an omnidirectional camera. This research focus on determining the flow of baseline before calculating the disparity map. To estimate the flow and to tracking the object, we use three and four points in the surface of an object from two different data (panoramic image) that were already chosen. By moving the camera horizontally, we get the tracks of them. The obtained tracks are visually similar. Each track represent the coordinate of each tracking point. Two of four tracks have a graphical representation similar to second order polynomial

    Robust Attitude Estimation with Catadioptric Vision

    Get PDF
    International audienceAttitude (roll and pitch) is an essential data for the navigation of a UAV. Rather than using inertial sensors, we propose a catadioptric vision system allowing a fast, robust and accurate estimation of these angles. We show that the optimization of a sky/ground partitioning criterion associated with the specific geometric characteristics of the catadioptric sensor provides very interesting results. Experimental results obtained on real sequences are presented and compared with inertial sensors measures

    Vision-based Navigation and Mapping Using Non-central Catadioptric Omnidirectional Camera

    Get PDF
    Omnidirectional catadioptric cameras find their use in navigation and mapping, owing to their wide field of view. Having a wider field of view, or rather a potential 360 degree field of view, allows the user to see and move more freely in the navigation space. A catadioptric camera system is a low cost system which consists of a mirror and a camera. A calibration method was developed in order to obtain the relative position and orientation between the two components so that they can be considered as one monolithic system. The position of the system was determined, for an environment using the conditions obtained from the reflective properties of the mirror. Object control points were set up and experiments were performed at different sites to test the mathematical models and the achieved location and mapping accuracy of the system. The obtained positions were then used to map the environment

    Omnidirectional Stereo Vision for Autonomous Vehicles

    Get PDF
    Environment perception with cameras is an important requirement for many applications for autonomous vehicles and robots. This work presents a stereoscopic omnidirectional camera system for autonomous vehicles which resolves the problem of a limited field of view and provides a 360° panoramic view of the environment. We present a new projection model for these cameras and show that the camera setup overcomes major drawbacks of traditional perspective cameras in many applications
    corecore