8 research outputs found

    Quantum Memory: A Missing Piece in Quantum Computing Units

    Full text link
    Memory is an indispensable component in classical computing systems. While the development of quantum computing is still in its early stages, current quantum processing units mainly function as quantum registers. Consequently, the actual role of quantum memory in future advanced quantum computing architectures remains unclear. With the rapid scaling of qubits, it is opportune to explore the potential and feasibility of quantum memory across different substrate device technologies and application scenarios. In this paper, we provide a full design stack view of quantum memory. We start from the elementary component of a quantum memory device, quantum memory cells. We provide an abstraction to a quantum memory cell and define metrics to measure the performance of physical platforms. Combined with addressing functionality, we then review two types of quantum memory devices: random access quantum memory (RAQM) and quantum random access memory (QRAM). Building on top of these devices, quantum memory units in the computing architecture, including building a quantum memory unit, quantum cache, quantum buffer, and using QRAM for the quantum input-output module, are discussed. We further propose the programming model for the quantum memory units and discuss their possible applications. By presenting this work, we aim to attract more researchers from both the Quantum Information Science (QIS) and classical memory communities to enter this emerging and exciting area.Comment: 41 pages, 11 figures, 7 table

    Roadmap on all-optical processing

    Get PDF
    The ability to process optical signals without passing into the electrical domain has always attracted the attention of the research community. Processing photons by photons unfolds new scenarios, in principle allowing for unseen signal processing and computing capabilities. Optical computation can be seen as a large scientific field in which researchers operate, trying to find solutions to their specific needs by different approaches; although the challenges can be substantially different, they are typically addressed using knowledge and technological platforms that are shared across the whole field. This significant know-how can also benefit other scientific communities, providing lateral solutions to their problems, as well as leading to novel applications. The aim of this Roadmap is to provide a broad view of the state-of-the-art in this lively scientific research field and to discuss the advances required to tackle emerging challenges, thanks to contributions authored by experts affiliated to both academic institutions and high-tech industries. The Roadmap is organized so as to put side by side contributions on different aspects of optical processing, aiming to enhance the cross-contamination of ideas between scientists working in three different fields of photonics: optical gates and logical units, high bit-rate signal processing and optical quantum computing. The ultimate intent of this paper is to provide guidance for young scientists as well as providing research-funding institutions and stake holders with a comprehensive overview of perspectives and opportunities offered by this research field

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Multi-qubit circuit quantum electrodynamics

    Get PDF

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore