115,796 research outputs found

    Image mosaicing of panoramic images

    Get PDF
    Image mosaicing is combining or stitching several images of a scene or object taken from different angles into a single image with a greater angle of view. This is practised a developing field. Recent years have seen quite a lot of advancement in the field. Many algorithms have been developed over the years. Our work is based on feature based approach of image mosaicing. The steps in image mosaic consist of feature point detection, feature point descriptor extraction and feature point matching. RANSAC algorithm is applied to eliminate variety of mismatches and acquire transformation matrix between the images. The input image is transformed with the right mapping model for image stitching. Therefore, this paper proposes an algorithm for mosaicing two images efficiently using Harris-corner feature detection method, RANSAC feature matching method and then image transformation, warping and by blending methods

    Research on texture image feature extraction method

    Get PDF
    In this paper, we give several classical feature extraction methods, including grayscale co-generation matrix, Gabor and wavelet transform features, and local binary pattern series features. We introduce the basic principles of these feature extraction algorithms and some derivative methods respectively. Finally, we analyze the advantages and disadvantages of the existing feature extraction methods: grayscale covariance matrix can analyze the arrangement rules of image texture and extract local spatial features of the image, filtering methods and local feature extraction methods are widely used, but the extracted features do not provide a good description of the image structure; and the multi-feature fusion operation brings huge computational effort. Therefore, the future developable directions are proposed based on the existing problems and difficulties in processing texture images

    Image retrieval based on colour and improved NMI texture features

    Get PDF
    This paper proposes an improved method for extracting NMI features. This method uses Particle Swarm Optimization in advance to optimize the two-dimensional maximum class-to-class variance (2OTSU) in advance. Afterwards, the optimized 2OUSU is introduced into the Pulse Coupled Neural Network (PCNN) to automatically obtain the number of iterations of the loop. We use an improved PCNN method to extract the NMI features of the image. For the problem of low accuracy of single feature, this paper proposes a new method of multi-feature fusion based on image retrieval. It uses HSV colour features and texture features, where, the texture feature extraction methods include: Grey Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) and Improved PCNN. The experimental results show that: on the Corel-1k dataset, compared with similar algorithms, the retrieval accuracy of this method is improved by 13.6%; On the AT&T dataset, the retrieval accuracy is improved by 13.4% compared with the similar algorithm; on the FD-XJ dataset, the retrieval accuracy is improved by 17.7% compared with the similar algorithm. Therefore, the proposed algorithm has better retrieval performance and robustness compared with the existing image retrieval algorithms based on multi-feature fusion

    Extracting geometric information from images with the novel Self Affine Feature Transform

    Get PDF
    Based on our research, the Self Affine Feature Transform (SAFT) was introduced as it extracts quantities which hold information of the edges in the investigated image region. This paper gives details on algorithms which extract various geometric information from the SAFT matrix. As different image types should be analysed differently, a classification procedure must be performed first. The main contribution of this paper is to describe this classification in details. Information extraction is applied for solving different 2-dimensional image processing tasks, amongst them the detection of con­ver­gent lines, circles, ellipses, parabolae and hiperbolae or localizing corners of calibration grids in a robust and accurate manner

    Parallel Nonnegative Matrix Factorization Algorithms for Hyperspectral Images

    Get PDF
    Hyperspectral imaging is a branch of remote sensing which deals with creating and processing aerial or satellite pictures that capture wide range of wavelengths, most of which are invisible to the naked eye. Hyperspectral images are composed of many bands, each corresponding to certain light frequencies. Because of their complex nature, image processing tasks such as feature extraction can be resource and time consuming. There are many unsupervised extraction methods available. A recently investigated one is Nonnegative Matrix Factorization (NMF), a method that given positive linear matrix of positive sources, attempts to recover them. In this thesis we designed, implemented and tested parallel versions of two popular iterative NMF algorithms: one based on multiplicative updates, and another on alternative gradient computation. Our algorithms are designed to leverage the multi-processor SMP architecture and power of threading to evenly distribute the workload among the available CPU’s and improve the performance as compared to their sequential counterparts. This work could be used as a basis for creating even more powerful distributed algorithms that would work on clustered architectures. The experiments show a speedup in both algorithms without reduction in accuracy. In addition, we have also developed a java based framework offering reading and writing tools for various hyperspectral image types, as well as visualization tools, and a graphical user interface to launch and control the factorization processes

    Panoramic mosaics from Chang’E-3 PCAM images at Point A

    Get PDF
    This paper presents a unique approach for panoramic mosaics based on Moon surface images from the Chang’E-3 (CE-3) mission, with consideration of the exposure time and external illumination changes in CE-3 Panoramic Camera (PCAM) imaging. The engineering implementation involves algorithms of image feature points extraction by using Speed-Up Robust Features (SURF), and a newly defined measure is used to obtain the corresponding points in feature matching. Then, the transformation matrix is calculated and optimized between adjacent images by the Levenberg–Marquardt algorithm. Finally, an image is reconstructed by using a fade-in-fade-out method based on linear interpolation to achieve a seamless mosaic. The developed algorithm has been tested with CE-3 PCAM images at Point A (one of the rover sites where the rover is separated from the lander). This approach has produced accurate mosaics from CE-3 PCAM images, as is indicated by the value of the Peak Signal to Noise Ratio (PSNR), which is greater than 31 dB between the overlapped region of the images before and after fusion

    A feature extraction software tool for agricultural object-based image analysis

    Full text link
    A software application for automatic descriptive feature extraction from image-objects, FETEX 2.0, is presented and described in this paper. The input data include a multispectral high resolution digital image and a vector file in shapefile format containing the polygons or objects, usually extracted from a geospatial database. The design of the available descriptive features or attributes has been mainly focused on the description of agricultural parcels, providing a variety of information: spectral information from the different image bands; textural descriptors of the distribution of the intensity values based on the grey level co-occurrence matrix, the wavelet transform and a factor of edgeness; structural features describing the spatial arrangement of the elements inside the objects, based on the semivariogram curve and the Hough transform; and several descriptors of the object shape. The output file is a table that can be produced in four alternative formats, containing a vector of features for every object processed. This table of numeric values describing the objects from different points of view can be externally used as input data for any classification software. Additionally, several types of graphs and images describing the feature extraction procedure are produced, useful for interpretation and understanding the process. A test of the processing times is included, as well as an application of the program in a real parcel-based classification problem, providing some results and analyzing the applicability, the future improvement of the methodologies, and the use of additional types of data sets. This software is intended to be a dynamic tool, integrating further data and feature extraction algorithms for the progressive improvement of land use/land cover database classification and agricultural database updating processes. © 2011 Elsevier B.V.The authors appreciate the financial support provided by the Spanish Ministerio de Ciencia e Innovacion and the FEDER in the framework of the Project CGL2009-14220 and CGL2010-19591/BTE, the Spanish Institut Geografico Nacional (IGN), Institut Cartografico Valenciano (ICV), Institut Murciano de Investigacion y Desarrollo Agrario y Alimentario (IMIDA) and Banco de Terras de Galicia (Bantegal).Ruiz Fernández, LÁ.; Recio Recio, JA.; Fernández-Sarría, A.; Hermosilla, T. (2011). A feature extraction software tool for agricultural object-based image analysis. Computers and Electronics in Agriculture. 76(2):284-296. https://doi.org/10.1016/j.compag.2011.02.007S28429676

    Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition

    Full text link
    This paper presents a novel quadratic projection based feature extraction framework, where a set of quadratic matrices is learned to distinguish each class from all other classes. We formulate quadratic matrix learning (QML) as a standard semidefinite programming (SDP) problem. However, the con- ventional interior-point SDP solvers do not scale well to the problem of QML for high-dimensional data. To solve the scalability of QML, we develop an efficient algorithm, termed DualQML, based on the Lagrange duality theory, to extract nonlinear features. To evaluate the feasibility and effectiveness of the proposed framework, we conduct extensive experiments on biometric recognition. Experimental results on three representative biometric recogni- tion tasks, including face, palmprint, and ear recognition, demonstrate the superiority of the DualQML-based feature extraction algorithm compared to the current state-of-the-art algorithm
    corecore