14,500 research outputs found

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    HopScotch - a low-power renewable energy base station network for rural broadband access

    Get PDF
    The provision of adequate broadband access to communities in sparsely populated rural areas has in the past been severely restricted. In this paper, we present a wireless broadband access test bed running in the Scottish Highlands and Islands which is based on a relay network of low-power base stations. Base stations are powered by a combination of renewable sources creating a low cost and scalable solution suitable for community ownership. The use of the 5~GHz bands allows the network to offer large data rates and the testing of ultra high frequency ``white space'' bands allow expansive coverage whilst reducing the number of base stations or required transmission power. We argue that the reliance on renewable power and the intelligent use of frequency bands makes this approach an economic green radio technology which can address the problem of rural broadband access

    COOPERATIVE NETWORKING AND RELATED ISSUES: STABILITY, ENERGY HARVESTING, AND NEIGHBOR DISCOVERY

    Get PDF
    This dissertation deals with various newly emerging topics in the context of cooperative networking. The first part is about the cognitive radio. To guarantee the performance of high priority users, it is important to know the activity of the high priority communication system but the knowledge is usually imperfect due to randomness in the observed signal. In such a context, the stability property of cognitive radio systems in the presence of sensing errors is studied. General guidelines on controlling the operating point of the sensing device over its receiver operating characteristics are also given. We then consider the hybrid of different modes of operation for cognitive radio systems with time-varying connectivity. The random connectivity gives additional chances that can be utilized by the low priority communication system. The second part of this dissertation is about the random access. We are specifically interested in the scenario when the nodes are harvesting energy from the environment. For such a system, we accurately assess the effect of limited, but renewable, energy availability on the stability region. The effect of finite capacity batteries is also studied. We next consider the exploitation of diversity amongst users under random access framework. That is, each user adapts its transmission probability based on the local channel state information in a decentralized manner. The impact of imperfect channel state information on the stability region is investigated. Furthermore, it is compared to the class of stationary scheduling policies that make centralized decisions based on the channel state feedback. The backpressure policy for cross-layer control of wireless multi-hop networks is known to be throughput-optimal for i.i.d. arrivals. The third part of this dissertation is about the backpressure-based control for networks with time-correlated arrivals that may exhibit long-range dependency. It is shown that the original backpressure policy is still throughput-optimal but with increased average network delay. The case when the arrival rate vector is possibly outside the stability region is also studied by augmenting the backpressure policy with the flow control mechanism. Lastly, the problem of neighbor discovery in a wireless sensor network is dealt. We first introduce the realistic effect of physical layer considerations in the evaluation of the performance of logical discovery algorithms by incorporating physical layer parameters. Secondly, given the lack of knowledge of the number of neighbors along with the lack of knowledge of the individual signal parameters, we adopt the viewpoint of random set theory to the problem of detecting the transmitting neighbors. Random set theory is a generalization of standard probability theory by assigning sets, rather than values, to random outcomes and it has been applied to multi-user detection problem when the set of transmitters are unknown and dynamically changing
    • …
    corecore