1,137 research outputs found

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Full text link
    Objective: The advent of High-Performance Computing (HPC) in recent years has led to its increasing use in brain study through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a single acceleration (or homogeneous) platform to effectively address the complete array of modeling requirements. Approach: In this paper we propose and build BrainFrame, a heterogeneous acceleration platform, incorporating three distinct acceleration technologies, a Dataflow Engine, a Xeon Phi and a GP-GPU. The PyNN framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different instances of a state-of-the-art neuron model, modeling the Inferior- Olivary Nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal- network dimensions but also different network-connectivity circumstances that can drastically change application workload characteristics. Main results: The synthetic approach of three HPC technologies demonstrated that BrainFrame is better able to cope with the modeling diversity encountered. Our performance analysis shows clearly that the model directly affect performance and all three technologies are required to cope with all the model use cases.Comment: 16 pages, 18 figures, 5 table

    EIE: Efficient Inference Engine on Compressed Deep Neural Network

    Full text link
    State-of-the-art deep neural networks (DNNs) have hundreds of millions of connections and are both computationally and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources and power budgets. While custom hardware helps the computation, fetching weights from DRAM is two orders of magnitude more expensive than ALU operations, and dominates the required power. Previously proposed 'Deep Compression' makes it possible to fit large DNNs (AlexNet and VGGNet) fully in on-chip SRAM. This compression is achieved by pruning the redundant connections and having multiple connections share the same weight. We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Going from DRAM to SRAM gives EIE 120x energy saving; Exploiting sparsity saves 10x; Weight sharing gives 8x; Skipping zero activations from ReLU saves another 3x. Evaluated on nine DNN benchmarks, EIE is 189x and 13x faster when compared to CPU and GPU implementations of the same DNN without compression. EIE has a processing power of 102GOPS/s working directly on a compressed network, corresponding to 3TOPS/s on an uncompressed network, and processes FC layers of AlexNet at 1.88x10^4 frames/sec with a power dissipation of only 600mW. It is 24,000x and 3,400x more energy efficient than a CPU and GPU respectively. Compared with DaDianNao, EIE has 2.9x, 19x and 3x better throughput, energy efficiency and area efficiency.Comment: External Links: TheNextPlatform: http://goo.gl/f7qX0L ; O'Reilly: https://goo.gl/Id1HNT ; Hacker News: https://goo.gl/KM72SV ; Embedded-vision: http://goo.gl/joQNg8 ; Talk at NVIDIA GTC'16: http://goo.gl/6wJYvn ; Talk at Embedded Vision Summit: https://goo.gl/7abFNe ; Talk at Stanford University: https://goo.gl/6lwuer. Published as a conference paper in ISCA 201

    Reconfigurable computing for large-scale graph traversal algorithms

    Get PDF
    This thesis proposes a reconfigurable computing approach for supporting parallel processing in large-scale graph traversal algorithms. Our approach is based on a reconfigurable hardware architecture which exploits the capabilities of both FPGAs (Field-Programmable Gate Arrays) and a multi-bank parallel memory subsystem. The proposed methodology to accelerate graph traversal algorithms has been applied to three case studies, revealing that application-specific hardware customisations can benefit performance. A summary of our four contributions is as follows. First, a reconfigurable computing approach to accelerate large-scale graph traversal algorithms. We propose a reconfigurable hardware architecture which decouples computation and communication while keeping multiple memory requests in flight at any given time, taking advantage of the high bandwidth of multi-bank memory subsystems. Second, a demonstration of the effectiveness of our approach through two case studies: the breadth-first search algorithm, and a graphlet counting algorithm from bioinformatics. Both case studies involve graph traversal, but each of them adopts a different graph data representation. Third, a method for using on-chip memory resources in FPGAs to reduce off-chip memory accesses for accelerating graph traversal algorithms, through a case-study of the All-Pairs Shortest-Paths algorithm. This case study has been applied to process human brain network data. Fourth, an evaluation of an approach based on instruction-set extension for FPGA design against many-core GPUs (Graphics Processing Units), based on a set of benchmarks with different memory access characteristics. It is shown that while GPUs excel at streaming applications, the proposed approach can outperform GPUs in applications with poor locality characteristics, such as graph traversal problems.Open Acces

    FPGA-Based Acceleration of the Self-Organizing Map (SOM) Algorithm using High-Level Synthesis

    Get PDF
    One of the fastest growing and the most demanding areas of computer science is Machine Learning (ML). Self-Organizing Map (SOM), categorized as unsupervised ML, is a popular data-mining algorithm widely used in Artificial Neural Network (ANN) for mapping high dimensional data into low dimensional feature maps. SOM, being computationally intensive, requires high computational time and power when dealing with large datasets. Acceleration of many computationally intensive algorithms can be achieved using Field-Programmable Gate Arrays (FPGAs) but it requires extensive hardware knowledge and longer development time when employing traditional Hardware Description Language (HDL) based design methodology. Open Computing Language (OpenCL) is a standard framework for writing parallel computing programs that execute on heterogeneous computing systems. Intel FPGA Software Development Kit for OpenCL (IFSO) is a High-Level Synthesis (HLS) tool that provides a more efficient alternative to HDL-based design. This research presents an optimized OpenCL implementation of SOM algorithm on Stratix V and Arria 10 FPGAs using IFSO. Compared to recent SOM implementations on Central Processing Unit (CPU) and Graphics Processing Unit (GPU), our OpenCL implementation on FPGAs provides superior speed performance and power consumption results. Stratix V achieves speedup of 1.41x - 16.55x compared to AMD and Intel CPU and 2.18x compared to Nvidia GPU whereas Arria 10 achieves speedup of 1.63x - 19.15x compared to AMD and Intel CPU and 2.52x compared to Nvidia GPU. In terms of power consumption, Stratix V is 35.53x and 42.53x whereas Arria 10 is 15.82x and 15.93x more power efficient compared to CPU and GPU respectively

    Accelerating Pattern Recognition Algorithms On Parallel Computing Architectures

    Get PDF
    The move to more parallel computing architectures places more responsibility on the programmer to achieve greater performance. The programmer must now have a greater understanding of the underlying architecture and the inherent algorithmic parallelism. Using parallel computing architectures for exploiting algorithmic parallelism can be a complex task. This dissertation demonstrates various techniques for using parallel computing architectures to exploit algorithmic parallelism. Specifically, three pattern recognition (PR) approaches are examined for acceleration across multiple parallel computing architectures, namely field programmable gate arrays (FPGAs) and general purpose graphical processing units (GPGPUs). Phase-only filter correlation for fingerprint identification was studied as the first PR approach. This approach\u27s sensitivity to angular rotations, scaling, and missing data was surveyed. Additionally, a novel FPGA implementation of this algorithm was created using fixed point computations, deep pipelining, and four computation phases. Communication and computation were overlapped to efficiently process large fingerprint galleries. The FPGA implementation showed approximately a 47 times speedup over a central processing unit (CPU) implementation with negligible impact on precision. For the second PR approach, a spiking neural network (SNN) algorithm for a character recognition application was examined. A novel FPGA implementation of the approach was developed incorporating a scalable modular SNN processing element (PE) to efficiently perform neural computations. The modular SNN PE incorporated streaming memory, fixed point computation, and deep pipelining. This design showed speedups of approximately 3.3 and 8.5 times over CPU implementations for 624 and 9,264 sized neural networks, respectively. Results indicate that the PE design could scale to process larger sized networks easily. Finally for the third PR approach, cellular simultaneous recurrent networks (CSRNs) were investigated for GPGPU acceleration. Particularly, the applications of maze traversal and face recognition were studied. Novel GPGPU implementations were developed employing varying quantities of task-level, data-level, and instruction-level parallelism to achieve efficient runtime performance. Furthermore, the performance of the face recognition application was examined across a heterogeneous cluster of multi-core and GPGPU architectures. A combination of multi-core processors and GPGPUs achieved roughly a 996 times speedup over a single-core CPU implementation. From examining these PR approaches for acceleration, this dissertation presents useful techniques and insight applicable to other algorithms to improve performance when designing a parallel implementation

    The future of computing beyond Moore's Law.

    Get PDF
    Moore's Law is a techno-economic model that has enabled the information technology industry to double the performance and functionality of digital electronics roughly every 2 years within a fixed cost, power and area. Advances in silicon lithography have enabled this exponential miniaturization of electronics, but, as transistors reach atomic scale and fabrication costs continue to rise, the classical technological driver that has underpinned Moore's Law for 50 years is failing and is anticipated to flatten by 2025. This article provides an updated view of what a post-exascale system will look like and the challenges ahead, based on our most recent understanding of technology roadmaps. It also discusses the tapering of historical improvements, and how it affects options available to continue scaling of successors to the first exascale machine. Lastly, this article covers the many different opportunities and strategies available to continue computing performance improvements in the absence of historical technology drivers. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Get PDF
    Objective. The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. Approach. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU
    • …
    corecore