159 research outputs found

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    Integrality and cutting planes in semidefinite programming approaches for combinatorial optimization

    Get PDF
    Many real-life decision problems are discrete in nature. To solve such problems as mathematical optimization problems, integrality constraints are commonly incorporated in the model to reflect the choice of finitely many alternatives. At the same time, it is known that semidefinite programming is very suitable for obtaining strong relaxations of combinatorial optimization problems. In this dissertation, we study the interplay between semidefinite programming and integrality, where a special focus is put on the use of cutting-plane methods. Although the notions of integrality and cutting planes are well-studied in linear programming, integer semidefinite programs (ISDPs) are considered only recently. We show that manycombinatorial optimization problems can be modeled as ISDPs. Several theoretical concepts, such as the Chvátal-Gomory closure, total dual integrality and integer Lagrangian duality, are studied for the case of integer semidefinite programming. On the practical side, we introduce an improved branch-and-cut approach for ISDPs and a cutting-plane augmented Lagrangian method for solving semidefinite programs with a large number of cutting planes. Throughout the thesis, we apply our results to a wide range of combinatorial optimization problems, among which the quadratic cycle cover problem, the quadratic traveling salesman problem and the graph partition problem. Our approaches lead to novel, strong and efficient solution strategies for these problems, with the potential to be extended to other problem classes

    Semidefinite Programming. methods and algorithms for energy management

    Get PDF
    La présente thèse a pour objet d explorer les potentialités d une méthode prometteuse de l optimisation conique, la programmation semi-définie positive (SDP), pour les problèmes de management d énergie, à savoir relatifs à la satisfaction des équilibres offre-demande électrique et gazier.Nos travaux se déclinent selon deux axes. Tout d abord nous nous intéressons à l utilisation de la SDP pour produire des relaxations de problèmes combinatoires et quadratiques. Si une relaxation SDP dite standard peut être élaborée très simplement, il est généralement souhaitable de la renforcer par des coupes, pouvant être déterminées par l'étude de la structure du problème ou à l'aide de méthodes plus systématiques. Nous mettons en œuvre ces deux approches sur différentes modélisations du problème de planification des arrêts nucléaires, réputé pour sa difficulté combinatoire. Nous terminons sur ce sujet par une expérimentation de la hiérarchie de Lasserre, donnant lieu à une suite de SDP dont la valeur optimale tend vers la solution du problème initial.Le second axe de la thèse porte sur l'application de la SDP à la prise en compte de l'incertitude. Nous mettons en œuvre une approche originale dénommée optimisation distributionnellement robuste , pouvant être vue comme un compromis entre optimisation stochastique et optimisation robuste et menant à des approximations sous forme de SDP. Nous nous appliquons à estimer l'apport de cette approche sur un problème d'équilibre offre-demande avec incertitude. Puis, nous présentons une relaxation SDP pour les problèmes MISOCP. Cette relaxation se révèle être de très bonne qualité, tout en ne nécessitant qu un temps de calcul raisonnable. La SDP se confirme donc être une méthode d optimisation prometteuse qui offre de nombreuses opportunités d'innovation en management d énergie.The present thesis aims at exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for addressing some difficult problems of energy management. We pursue two main objectives. The first one consists of using SDP to provide tight relaxations of combinatorial and quadratic problems. A first relaxation, called standard can be derived in a generic way but it is generally desirable to reinforce them, by means of tailor-made tools or in a systematic fashion. These two approaches are implemented on different models of the Nuclear Outages Scheduling Problem, a famous combinatorial problem. We conclude this topic by experimenting the Lasserre's hierarchy on this problem, leading to a sequence of semidefinite relaxations whose optimal values tends to the optimal value of the initial problem.The second objective deals with the use of SDP for the treatment of uncertainty. We investigate an original approach called distributionnally robust optimization , that can be seen as a compromise between stochastic and robust optimization and admits approximations under the form of a SDP. We compare the benefits of this method w.r.t classical approaches on a demand/supply equilibrium problem. Finally, we propose a scheme for deriving SDP relaxations of MISOCP and we report promising computational results indicating that the semidefinite relaxation improves significantly the continuous relaxation, while requiring a reasonable computational effort.SDP therefore proves to be a promising optimization method that offers great opportunities for innovation in energy management.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Mixed-integer Nonlinear Optimization: a hatchery for modern mathematics

    Get PDF
    The second MFO Oberwolfach Workshop on Mixed-Integer Nonlinear Programming (MINLP) took place between 2nd and 8th June 2019. MINLP refers to one of the hardest Mathematical Programming (MP) problem classes, involving both nonlinear functions as well as continuous and integer decision variables. MP is a formal language for describing optimization problems, and is traditionally part of Operations Research (OR), which is itself at the intersection of mathematics, computer science, engineering and econometrics. The scientific program has covered the three announced areas (hierarchies of approximation, mixed-integer nonlinear optimal control, and dealing with uncertainties) with a variety of tutorials, talks, short research announcements, and a special "open problems'' session

    Optimal Design of Composite Structures Under Manufacturing Constraints

    Get PDF

    Global Optimisation for Energy System

    Get PDF
    The goal of global optimisation is to find globally optimal solutions, avoiding local optima and other stationary points. The aim of this thesis is to provide more efficient global optimisation tools for energy systems planning and operation. Due to the ongoing increasing of complexity and decentralisation of power systems, the use of advanced mathematical techniques that produce reliable solutions becomes necessary. The task of developing such methods is complicated by the fact that most energy-related problems are nonconvex due to the nonlinear Alternating Current Power Flow equations and the existence of discrete elements. In some cases, the computational challenges arising from the presence of non-convexities can be tackled by relaxing the definition of convexity and identifying classes of problems that can be solved to global optimality by polynomial time algorithms. One such property is known as invexity and is defined by every stationary point of a problem being a global optimum. This thesis investigates how the relation between the objective function and the structure of the feasible set is connected to invexity and presents necessary conditions for invexity in the general case and necessary and sufficient conditions for problems with two degrees of freedom. However, nonconvex problems often do not possess any provable convenient properties, and specialised methods are necessary for providing global optimality guarantees. A widely used technique is solving convex relaxations in order to find a bound on the optimal solution. Semidefinite Programming relaxations can provide good quality bounds, but they suffer from a lack of scalability. We tackle this issue by proposing an algorithm that combines decomposition and linearisation approaches. In addition to continuous non-convexities, many problems in Energy Systems model discrete decisions and are expressed as mixed-integer nonlinear programs (MINLPs). The formulation of a MINLP is of significant importance since it affects the quality of dual bounds. In this thesis we investigate algebraic characterisations of on/off constraints and develop a strengthened version of the Quadratic Convex relaxation of the Optimal Transmission Switching problem. All presented methods were implemented in mathematical modelling and optimisation frameworks PowerTools and Gravity

    SDP-based bounds for the Quadratic Cycle Cover Problem via cutting plane augmented Lagrangian methods and reinforcement learning

    Full text link
    We study the Quadratic Cycle Cover Problem (QCCP), which aims to find a node-disjoint cycle cover in a directed graph with minimum interaction cost between successive arcs. We derive several semidefinite programming (SDP) relaxations and use facial reduction to make these strictly feasible. We investigate a nontrivial relationship between the transformation matrix used in the reduction and the structure of the graph, which is exploited in an efficient algorithm that constructs this matrix for any instance of the problem. To solve our relaxations, we propose an algorithm that incorporates an augmented Lagrangian method into a cutting plane framework by utilizing Dykstra's projection algorithm. Our algorithm is suitable for solving SDP relaxations with a large number of cutting planes. Computational results show that our SDP bounds and our efficient cutting plane algorithm outperform other QCCP bounding approaches from the literature. Finally, we provide several SDP-based upper bounding techniques, among which a sequential Q-learning method that exploits a solution of our SDP relaxation within a reinforcement learning environment

    Mixed-integer programming techniques for the minimum sum-of-squares clustering problem

    Get PDF
    The minimum sum-of-squares clustering problem is a very important problem in data mining and machine learning with very many applications in, e.g., medicine or social sciences. However, it is known to be NP-hard in all relevant cases and to be notoriously hard to be solved to global optimality in practice. In this paper, we develop and test different tailored mixed-integer programming techniques to improve the performance of state-of-the-art MINLP solvers when applied to the problem—among them are cutting planes, propagation techniques, branching rules, or primal heuristics. Our extensive numerical study shows that our techniques significantly improve the performance of the open-source MINLP solver SCIP. Consequently, using our novel techniques, we can solve many instances that are not solvable with SCIP without our techniques and we obtain much smaller gaps for those instances that can still not be solved to global optimality
    • …
    corecore