214 research outputs found

    Loyalty cards and the problem of CAPTCHA: 2nd tier security and usability issues for senior citizens

    Get PDF
    Information Security often works in antipathy to access and useability in communities of older citizens. Whilst security features are required to prevent the disclosure of information, some security tools have a deleterious effect upon users, resulting in insecure practices. Security becomes unfit for purpose where users prefer to abandon applications and online benefits in favour of non-digital authentication and verification requirements. For some, the ability to read letters and symbols from a distorted image is a decidedly more difficult task than for others, and the resulting level of security from CAPTCHA tests is not consistent from person to person. This paper discusses the changing paradigm regarding second tier applications where non-essential benefits are forgone in order to avoid the frustration, uncertainty and humiliation of repeated failed attempts to access online software by means of CAPTCHA

    The robustness of animated text CAPTCHAs

    Get PDF
    PhD ThesisCAPTCHA is standard security technology that uses AI techniques to tells computer and human apart. The most widely used CAPTCHA are text-based CAPTCHA schemes. The robustness and usability of these CAPTCHAs relies mainly on the segmentation resistance mechanism that provides robustness against individual character recognition attacks. However, many CAPTCHAs have been shown to have critical flaws caused by many exploitable invariants in their design, leaving only a few CAPTCHA schemes resistant to attacks, including ReCAPTCHA and the Wikipedia CAPTCHA. Therefore, new alternative approaches to add motion to the CAPTCHA are used to add another dimension to the character cracking algorithms by animating the distorted characters and the background, which are also supported by tracking resistance mechanisms that prevent the attacks from identifying the main answer through frame-toframe attacks. These technologies are used in many of the new CAPTCHA schemes including the Yahoo CAPTCHA, CAPTCHANIM, KillBot CAPTCHAs, non-standard CAPTCHA and NuCAPTCHA. Our first question: can the animated techniques included in the new CAPTCHA schemes provide the required level of robustness against the attacks? Our examination has shown many of the CAPTCHA schemes that use the animated features can be broken through tracking attacks including the CAPTCHA schemes that uses complicated tracking resistance mechanisms. The second question: can the segmentation resistance mechanism used in the latest standard text-based CAPTCHA schemes still provide the additional required level of resistance against attacks that are not present missed in animated schemes? Our test against the latest version of ReCAPTCHA and the Wikipedia CAPTCHA exposed vulnerability problems against the novel attacks mechanisms that achieved a high success rate against them. The third question: how much space is available to design an animated text-based CAPTCHA scheme that could provide a good balance between security and usability? We designed a new animated text-based CAPTCHA using guidelines we designed based on the results of our attacks on standard and animated text-based CAPTCHAs, and we then tested its security and usability to answer this question. ii In this thesis, we put forward different approaches to examining the robustness of animated text-based CAPTCHA schemes and other standard text-based CAPTCHA schemes against segmentation and tracking attacks. Our attacks included several methodologies that required thinking skills in order to distinguish the animated text from the other animated noises, including the text distorted by highly tracking resistance mechanisms that displayed them partially as animated segments and which looked similar to noises in other CAPTCHA schemes. These attacks also include novel attack mechanisms and other mechanisms that uses a recognition engine supported by attacking methods that exploit the identified invariants to recognise the connected characters at once. Our attacks also provided a guideline for animated text-based CAPTCHAs that could provide resistance to tracking and segmentation attacks which we designed and tested in terms of security and usability, as mentioned before. Our research also contributes towards providing a toolbox for breaking CAPTCHAs in addition to a list of robustness and usability issues in the current CAPTCHA design that can be used to provide a better understanding of how to design a more resistant CAPTCHA scheme

    A case study of the robustness and the usability of CAPTCHA

    Get PDF
    The websites and network application experienced explosive growth in the past two decades. As the evolution of smartphones and mobile communication network have evolved, smart phone s user experience has been improved to a high level, and more and more people prefer to use smartphones. However, the development of techniques will not only increase the users experience but also bring threats of cracking. The development of techniques brought the potential threats to websites security. As a result, CAPTCHA, Completely Automated Public Turing test to tell Computers and Humans Apart, forms one of the methods to impede spamming attacks. As CAPTCHA s definition indicates, CAPTCHA should be recognized by humans easily while shouldn t be recognized computers. These two attributes of CAPTCHA can be considered as usability and robustness. Some CAPTCHA is difficult to be recognized by computers, but humans may also find difficult to recognize it. Therefore, the purpose of the thesis is to find out the balance between usability and robustness of CAPTCHA. Therefore, the related researches about the usability and the robustness of CAPTCHA will be reviewed, and the process of automatic CAPTCHA recognition will be Figured out and implemented by the author. The implementation will be based on the existed algorithms and a case study. The findings are the factors for improving CAPTCHA s robustness. They are from the each step of a specific process of automatic CAPTCHA recognition. Then the factors will be compared with the issues which are from the related usability research. The discussion will derive some possible ways, such as adding confusing characters and increasing data s diversity to improve robustness while keeping the usability according to the derived factors

    BlogForever: D2.5 Weblog Spam Filtering Report and Associated Methodology

    Get PDF
    This report is written as a first attempt to define the BlogForever spam detection strategy. It comprises a survey of weblog spam technology and approaches to their detection. While the report was written to help identify possible approaches to spam detection as a component within the BlogForver software, the discussion has been extended to include observations related to the historical, social and practical value of spam, and proposals of other ways of dealing with spam within the repository without necessarily removing them. It contains a general overview of spam types, ready-made anti-spam APIs available for weblogs, possible methods that have been suggested for preventing the introduction of spam into a blog, and research related to spam focusing on those that appear in the weblog context, concluding in a proposal for a spam detection workflow that might form the basis for the spam detection component of the BlogForever software

    Using machine learning to identify common flaws in CAPTCHA design: FunCAPTCHA case analysis

    Get PDF
    Human Interactive Proofs (HIPs 1 or CAPTCHAs 2) have become a first-level security measure on the Internet to avoid automatic attacks or minimize their effects. All the most widespread, successful or interesting CAPTCHA designs put to scrutiny have been successfully broken. Many of these attacks have been side-channel attacks. New designs are proposed to tackle these security problems while improving the human interface. FunCAPTCHA is the first commercial implementation of a gender classification CAPTCHA, with reported improvements in conversion rates. This article finds weaknesses in the security of FunCAPTCHA and uses simple machine learning (ML) analysis to test them. It shows a side-channel attack that leverages these flaws and successfully solves FunCAPTCHA on 90% of occasions without using meaningful image analysis. This simple yet effective security analysis can be applied with minor modifications to other HIPs proposals, allowing to check whether they leak enough information that would in turn allow for simple side-channel attacks

    Face recognition using statistical adapted local binary patterns.

    Get PDF
    Biometrics is the study of methods of recognizing humans based on their behavioral and physical characteristics or traits. Face recognition is one of the biometric modalities that received a great amount of attention from many researchers during the past few decades because of its potential applications in a variety of security domains. Face recognition however is not only concerned with recognizing human faces, but also with recognizing faces of non-biological entities or avatars. Fortunately, the need for secure and affordable virtual worlds is attracting the attention of many researchers who seek to find fast, automatic and reliable ways to identify virtual worlds’ avatars. In this work, I propose new techniques for recognizing avatar faces, which also can be applied to recognize human faces. Proposed methods are based mainly on a well-known and efficient local texture descriptor, Local Binary Pattern (LBP). I am applying different versions of LBP such as: Hierarchical Multi-scale Local Binary Patterns and Adaptive Local Binary Pattern with Directional Statistical Features in the wavelet space and discuss the effect of this application on the performance of each LBP version. In addition, I use a new version of LBP called Local Difference Pattern (LDP) with other well-known descriptors and classifiers to differentiate between human and avatar face images. The original LBP achieves high recognition rate if the tested images are pure but its performance gets worse if these images are corrupted by noise. To deal with this problem I propose a new definition to the original LBP in which the LBP descriptor will not threshold all the neighborhood pixel based on the central pixel value. A weight for each pixel in the neighborhood will be computed, a new value for each pixel will be calculated and then using simple statistical operations will be used to compute the new threshold, which will change automatically, based on the pixel’s values. This threshold can be applied with the original LBP or any other version of LBP and can be extended to work with Local Ternary Pattern (LTP) or any version of LTP to produce different versions of LTP for recognizing noisy avatar and human faces images

    Dynamic adversarial mining - effectively applying machine learning in adversarial non-stationary environments.

    Get PDF
    While understanding of machine learning and data mining is still in its budding stages, the engineering applications of the same has found immense acceptance and success. Cybersecurity applications such as intrusion detection systems, spam filtering, and CAPTCHA authentication, have all begun adopting machine learning as a viable technique to deal with large scale adversarial activity. However, the naive usage of machine learning in an adversarial setting is prone to reverse engineering and evasion attacks, as most of these techniques were designed primarily for a static setting. The security domain is a dynamic landscape, with an ongoing never ending arms race between the system designer and the attackers. Any solution designed for such a domain needs to take into account an active adversary and needs to evolve over time, in the face of emerging threats. We term this as the ‘Dynamic Adversarial Mining’ problem, and the presented work provides the foundation for this new interdisciplinary area of research, at the crossroads of Machine Learning, Cybersecurity, and Streaming Data Mining. We start with a white hat analysis of the vulnerabilities of classification systems to exploratory attack. The proposed ‘Seed-Explore-Exploit’ framework provides characterization and modeling of attacks, ranging from simple random evasion attacks to sophisticated reverse engineering. It is observed that, even systems having prediction accuracy close to 100%, can be easily evaded with more than 90% precision. This evasion can be performed without any information about the underlying classifier, training dataset, or the domain of application. Attacks on machine learning systems cause the data to exhibit non stationarity (i.e., the training and the testing data have different distributions). It is necessary to detect these changes in distribution, called concept drift, as they could cause the prediction performance of the model to degrade over time. However, the detection cannot overly rely on labeled data to compute performance explicitly and monitor a drop, as labeling is expensive and time consuming, and at times may not be a possibility altogether. As such, we propose the ‘Margin Density Drift Detection (MD3)’ algorithm, which can reliably detect concept drift from unlabeled data only. MD3 provides high detection accuracy with a low false alarm rate, making it suitable for cybersecurity applications; where excessive false alarms are expensive and can lead to loss of trust in the warning system. Additionally, MD3 is designed as a classifier independent and streaming algorithm for usage in a variety of continuous never-ending learning systems. We then propose a ‘Dynamic Adversarial Mining’ based learning framework, for learning in non-stationary and adversarial environments, which provides ‘security by design’. The proposed ‘Predict-Detect’ classifier framework, aims to provide: robustness against attacks, ease of attack detection using unlabeled data, and swift recovery from attacks. Ideas of feature hiding and obfuscation of feature importance are proposed as strategies to enhance the learning framework\u27s security. Metrics for evaluating the dynamic security of a system and recover-ability after an attack are introduced to provide a practical way of measuring efficacy of dynamic security strategies. The framework is developed as a streaming data methodology, capable of continually functioning with limited supervision and effectively responding to adversarial dynamics. The developed ideas, methodology, algorithms, and experimental analysis, aim to provide a foundation for future work in the area of ‘Dynamic Adversarial Mining’, wherein a holistic approach to machine learning based security is motivated

    Image Understanding for Automatic Human and Machine Separation.

    Get PDF
    PhDThe research presented in this thesis aims to extend the capabilities of human interaction proofs in order to improve security in web applications and services. The research focuses on developing a more robust and efficient Completely Automated Public Turing test to tell Computers and Human Apart (CAPTCHA) to increase the gap between human recognition and machine recognition. Two main novel approaches are presented, each one of them targeting a different area of human and machine recognition: a character recognition test, and an image recognition test. Along with the novel approaches, a categorisation for the available CAPTCHA methods is also introduced. The character recognition CAPTCHA is based on the creation of depth perception by using shadows to represent characters. The characters are created by the imaginary shadows produced by a light source, using as a basis the gestalt principle that human beings can perceive whole forms instead of just a collection of simple lines and curves. This approach was developed in two stages: firstly, two dimensional characters, and secondly three-dimensional character models. The image recognition CAPTCHA is based on the creation of cartoons out of faces. The faces used belong to people in the entertainment business, politicians, and sportsmen. The principal basis of this approach is that face perception is a cognitive process that humans perform easily and with a high rate of success. The process involves the use of face morphing techniques to distort the faces into cartoons, allowing the resulting image to be more robust against machine recognition. Exhaustive tests on both approaches using OCR software, SIFT image recognition, and face recognition software show an improvement in human recognition rate, whilst preventing robots break through the tests
    • 

    corecore