66,098 research outputs found

    Defective Coloring on Classes of Perfect Graphs

    Full text link
    In Defective Coloring we are given a graph GG and two integers χd\chi_d, Δ∗\Delta^* and are asked if we can χd\chi_d-color GG so that the maximum degree induced by any color class is at most Δ∗\Delta^*. We show that this natural generalization of Coloring is much harder on several basic graph classes. In particular, we show that it is NP-hard on split graphs, even when one of the two parameters χd\chi_d, Δ∗\Delta^* is set to the smallest possible fixed value that does not trivialize the problem (χd=2\chi_d = 2 or Δ∗=1\Delta^* = 1). Together with a simple treewidth-based DP algorithm this completely determines the complexity of the problem also on chordal graphs. We then consider the case of cographs and show that, somewhat surprisingly, Defective Coloring turns out to be one of the few natural problems which are NP-hard on this class. We complement this negative result by showing that Defective Coloring is in P for cographs if either χd\chi_d or Δ∗\Delta^* is fixed; that it is in P for trivially perfect graphs; and that it admits a sub-exponential time algorithm for cographs when both χd\chi_d and Δ∗\Delta^* are unbounded

    New bounds for the max-kk-cut and chromatic number of a graph

    Full text link
    We consider several semidefinite programming relaxations for the max-kk-cut problem, with increasing complexity. The optimal solution of the weakest presented semidefinite programming relaxation has a closed form expression that includes the largest Laplacian eigenvalue of the graph under consideration. This is the first known eigenvalue bound for the max-kk-cut when k>2k>2 that is applicable to any graph. This bound is exploited to derive a new eigenvalue bound on the chromatic number of a graph. For regular graphs, the new bound on the chromatic number is the same as the well-known Hoffman bound; however, the two bounds are incomparable in general. We prove that the eigenvalue bound for the max-kk-cut is tight for several classes of graphs. We investigate the presented bounds for specific classes of graphs, such as walk-regular graphs, strongly regular graphs, and graphs from the Hamming association scheme

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k≥3k \geq 3, deciding whether src(G)≤k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2−ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure

    Data Reduction for Graph Coloring Problems

    Full text link
    This paper studies the kernelization complexity of graph coloring problems with respect to certain structural parameterizations of the input instances. We are interested in how well polynomial-time data reduction can provably shrink instances of coloring problems, in terms of the chosen parameter. It is well known that deciding 3-colorability is already NP-complete, hence parameterizing by the requested number of colors is not fruitful. Instead, we pick up on a research thread initiated by Cai (DAM, 2003) who studied coloring problems parameterized by the modification distance of the input graph to a graph class on which coloring is polynomial-time solvable; for example parameterizing by the number k of vertex-deletions needed to make the graph chordal. We obtain various upper and lower bounds for kernels of such parameterizations of q-Coloring, complementing Cai's study of the time complexity with respect to these parameters. Our results show that the existence of polynomial kernels for q-Coloring parameterized by the vertex-deletion distance to a graph class F is strongly related to the existence of a function f(q) which bounds the number of vertices which are needed to preserve the NO-answer to an instance of q-List-Coloring on F.Comment: Author-accepted manuscript of the article that will appear in the FCT 2011 special issue of Information & Computatio
    • …
    corecore