2,762 research outputs found

    Biorthogonal partners and applications

    Get PDF
    Two digital filters H(z) and F(z) are said to be biorthogonal partners of each other if their cascade H(z)F(z) satisfies the Nyquist or zero-crossing property. Biorthogonal partners arise in many different contexts such as filterbank theory, exact and least squares digital interpolation, and multiresolution theory. They also play a central role in the theory of equalization, especially, fractionally spaced equalizers in digital communications. We first develop several theoretical properties of biorthogonal partners. We also develop conditions for the existence of biorthogonal partners and FIR biorthogonal pairs and establish the connections to the Riesz basis property. We then explain how these results play a role in many of the above-mentioned applications

    Vibration Theory, Vol. 4:advanced methods in stochastic dynamics of non-linear systems

    Get PDF

    Response and Reliability Problems of Dynamic Systems

    Get PDF

    Regularization and Bayesian Learning in Dynamical Systems: Past, Present and Future

    Full text link
    Regularization and Bayesian methods for system identification have been repopularized in the recent years, and proved to be competitive w.r.t. classical parametric approaches. In this paper we shall make an attempt to illustrate how the use of regularization in system identification has evolved over the years, starting from the early contributions both in the Automatic Control as well as Econometrics and Statistics literature. In particular we shall discuss some fundamental issues such as compound estimation problems and exchangeability which play and important role in regularization and Bayesian approaches, as also illustrated in early publications in Statistics. The historical and foundational issues will be given more emphasis (and space), at the expense of the more recent developments which are only briefly discussed. The main reason for such a choice is that, while the recent literature is readily available, and surveys have already been published on the subject, in the author's opinion a clear link with past work had not been completely clarified.Comment: Plenary Presentation at the IFAC SYSID 2015. Submitted to Annual Reviews in Contro

    Discrete-time linear and nonlinear aerodynamic impulse responses for efficient CFD analyses

    Get PDF
    This dissertation discusses the mathematical existence and the numerical identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner\u27s function), forced harmonic responses (such as Theodorsen\u27s function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This will establish the aerodynamic discrete-time impulse response function as the most fundamental and computationally efficient aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this dissertation help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories.;Nonlinear aerodynamic impulse responses are identified using the Volterra theory of nonlinear systems. The theory is described and a discrete-time kernel identification technique is presented. The kernel identification technique is applied to a simple nonlinear circuit for illustrative purposes. The method is then applied to the nonlinear viscous Burger\u27s equation as an example of an application to a simple CFD model. Finally, the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code.;Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time systems
    • …
    corecore