32,962 research outputs found

    The Two-mass Contribution to the Three-Loop Gluonic Operator Matrix Element Agg,Q(3)A_{gg,Q}^{(3)}

    Get PDF
    We calculate the two-mass QCD contributions to the massive operator matrix element Agg,QA_{gg,Q} at O(αs3)\mathcal{O} (\alpha_s^3) in analytic form in Mellin NN- and zz-space, maintaining the complete dependence on the heavy quark mass ratio. These terms are important ingredients for the matching relations of the variable flavor number scheme in the presence of two heavy quark flavors, such as charm and bottom. In Mellin NN-space the result is given in the form of nested harmonic, generalized harmonic, cyclotomic and binomial sums, with arguments depending on the mass ratio. The Mellin inversion of these quantities to zz-space gives rise to generalized iterated integrals with square root valued letters in the alphabet, depending on the mass ratio as well. Numerical results are presented.Comment: 99 pages LATEX, 2 Figure

    Use of Harmonic Inversion Techniques in the Periodic Orbit Quantization of Integrable Systems

    Full text link
    Harmonic inversion has already been proven to be a powerful tool for the analysis of quantum spectra and the periodic orbit orbit quantization of chaotic systems. The harmonic inversion technique circumvents the convergence problems of the periodic orbit sum and the uncertainty principle of the usual Fourier analysis, thus yielding results of high resolution and high precision. Based on the close analogy between periodic orbit trace formulae for regular and chaotic systems the technique is generalized in this paper for the semiclassical quantization of integrable systems. Thus, harmonic inversion is shown to be a universal tool which can be applied to a wide range of physical systems. The method is further generalized in two directions: Firstly, the periodic orbit quantization will be extended to include higher order hbar corrections to the periodic orbit sum. Secondly, the use of cross-correlated periodic orbit sums allows us to significantly reduce the required number of orbits for semiclassical quantization, i.e., to improve the efficiency of the semiclassical method. As a representative of regular systems, we choose the circle billiard, whose periodic orbits and quantum eigenvalues can easily be obtained.Comment: 21 pages, 9 figures, submitted to Eur. Phys. J.

    3-Loop Heavy Flavor Corrections in Deep-Inelastic Scattering with Two Heavy Quark Lines

    Full text link
    We consider gluonic contributions to the heavy flavor Wilson coefficients at 3-loop order in QCD with two heavy quark lines in the asymptotic region Q2≫m1(2)2Q^2 \gg m_{1(2)}^2. Here we report on the complete result in the case of two equal masses m1=m2m_1 = m_2 for the massive operator matrix element Agg,Q(3)A_{gg,Q}^{(3)}, which contributes to the corresponding heavy flavor transition matrix element in the variable flavor number scheme. Nested finite binomial sums and iterated integrals over square-root valued alphabets emerge in the result for this quantity in NN and xx-space, respectively. We also present results for the case of two unequal masses for the flavor non-singlet OMEs and on the scalar integrals ic case of Agg,Q(3)A_{gg,Q}^{(3)}, which were calculated without a further approximation. The graphs can be expressed by finite nested binomial sums over generalized harmonic sums, the alphabet of which contains rational letters in the ratio η=m12/m22\eta = m_1^2/m_2^2.Comment: 10 pages LATEX, 1 Figure, Proceedings of Loops and Legs in Quantum Field Theory, Weimar April 201

    The 3-Loop Pure Singlet Heavy Flavor Contributions to the Structure Function F2(x,Q2)F_2(x,Q^2) and the Anomalous Dimension

    Get PDF
    The pure singlet asymptotic heavy flavor corrections to 3-loop order for the deep-inelastic scattering structure function F2(x,Q2)F_2(x,Q^2) and the corresponding transition matrix element AQq(3),PSA_{Qq}^{(3), \sf PS} in the variable flavor number scheme are computed. In Mellin-NN space these inclusive quantities depend on generalized harmonic sums. We also recalculate the complete 3-loop pure singlet anomalous dimension for the first time. Numerical results for the Wilson coefficients, the operator matrix element and the contribution to the structure function F2(x,Q2)F_2(x,Q^2) are presented.Comment: 85 pages Latex, 14 Figures, 2 style file

    Huyghens, Bohr, Riemann and Galois: Phase-Locking

    No full text
    18 pages paper written in relation to the ICSSUR'05 conference held in Besancon, France to be published at a special issue of IJMPBSeveral mathematical views of phase-locking are developed. The classical Huyghens approach is generalized to include all harmonic and subharmonic resonances and is found to be connected to 1/f noise and prime number theory. Two types of quantum phase-locking operators are defined, one acting on the rational numbers, the other on the elements of a Galois field. In both cases we analyse in detail the phase properties and find them related respectively to the Riemann zeta function and to incomplete Gauss sums

    Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order epsilon-expansion of generalized hypergeometric functions with one half-integer value of parameter

    Full text link
    We continue the study of the construction of analytical coefficients of the epsilon-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we show the following results: Theorem A: The multiple (inverse) binomial sums of arbitrary weight and depth (see Eq. (1.1)) are expressible in terms of Remiddi-Vermaseren functions. Theorem B: The epsilon expansion of a hypergeometric function with one half-integer value of parameter (see Eq. (1.2)) is expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with coefficients that are ratios of polynomials. Some extra materials are available via the www at this http://theor.jinr.ru/~kalmykov/hypergeom/hyper.htmlComment: 24 pages, latex with amsmath and JHEP3.cls; v2: some typos corrected and a few references added; v3: few references added

    Multiple harmonic sums and Wolstenholme's theorem

    Full text link
    We give a family of congruences for the binomial coefficients (kp−1p−1){kp-1\choose p-1} in terms of multiple harmonic sums, a generalization of the harmonic numbers. Each congruence in this family (which depends on an additional parameter nn) involves a linear combination of nn multiple harmonic sums, and holds mod  p2n+3\mod{p^{2n+3}}. The coefficients in these congruences are integers depending on nn and kk, but independent of pp. More generally, we construct a family of congruences for (kp−1p−1)mod  p2n+3{kp-1\choose p-1} \mod{p^{2n+3}}, whose members contain a variable number of terms, and show that in this family there is a unique "optimized" congruence involving the fewest terms. The special case k=2k=2 and n=0n=0 recovers Wolstenholme's theorem (2p−1p−1)≡1mod  p3{2p-1\choose p-1}\equiv 1\mod{p^3}, valid for all primes p≥5p\geq 5. We also characterize those triples (n,k,p)(n, k, p) for which the optimized congruence holds modulo an extra power of pp: they are precisely those with either pp dividing the numerator of the Bernoulli number Bp−2n−kB_{p-2n-k}, or k≡0,1mod  pk \equiv 0, 1 \mod p.Comment: 22 page
    • …
    corecore