67,017 research outputs found

    Error Correction in Quantum Communication

    Full text link
    We show how procedures which can correct phase and amplitude errors can be directly applied to correct errors due to quantum entanglement. We specify general criteria for quantum error correction, introduce quantum versions of the Hamming and the Gilbert-Varshamov bounds and comment on the practical implementation of quantum codes.Comment: 9 pages, LaTex fil

    On multicarrier signals where the PMEPR of a random codeword is asymptotically log n

    Get PDF
    Multicarrier signals exhibit a large peak-to-mean envelope power ratio (PMEPR). In this correspondence, without using a Gaussian assumption, we derive lower and upper probability bounds for the PMEPR distribution when the number of subcarriers n is large. Even though the worst case PMEPR is of the order of n, the main result is that the PMEPR of a random codeword C=(c/sub 1/,...,c/sub n/) is logn with probability approaching one asymptotically, for the following three general cases: i) c/sub i/'s are independent and identically distributed (i.i.d.) chosen from a complex quadrature amplitude modulation (QAM) constellation in which the real and imaginary part of c/sub i/ each has i.i.d. and even distribution (not necessarily uniform), ii) c/sub i/'s are i.i.d. chosen from a phase-shift keying (PSK) constellation where the distribution over the constellation points is invariant under /spl pi//2 rotation, and iii) C is chosen uniformly from a complex sphere of dimension n. Based on this result, it is proved that asymptotically, the Varshamov-Gilbert (VG) bound remains the same for codes with PMEPR of less than logn chosen from QAM/PSK constellations

    Asymptotic Improvement of the Gilbert-Varshamov Bound on the Size of Binary Codes

    Full text link
    Given positive integers nn and dd, let A2(n,d)A_2(n,d) denote the maximum size of a binary code of length nn and minimum distance dd. The well-known Gilbert-Varshamov bound asserts that A2(n,d)2n/V(n,d1)A_2(n,d) \geq 2^n/V(n,d-1), where V(n,d)=i=0d(ni)V(n,d) = \sum_{i=0}^{d} {n \choose i} is the volume of a Hamming sphere of radius dd. We show that, in fact, there exists a positive constant cc such that A2(n,d)c2nV(n,d1)log2V(n,d1) A_2(n,d) \geq c \frac{2^n}{V(n,d-1)} \log_2 V(n,d-1) whenever d/n0.499d/n \le 0.499. The result follows by recasting the Gilbert- Varshamov bound into a graph-theoretic framework and using the fact that the corresponding graph is locally sparse. Generalizations and extensions of this result are briefly discussed.Comment: 10 pages, 3 figures; to appear in the IEEE Transactions on Information Theory, submitted August 12, 2003, revised March 28, 200

    On the Performance of Short Block Codes over Finite-State Channels in the Rare-Transition Regime

    Full text link
    As the mobile application landscape expands, wireless networks are tasked with supporting different connection profiles, including real-time traffic and delay-sensitive communications. Among many ensuing engineering challenges is the need to better understand the fundamental limits of forward error correction in non-asymptotic regimes. This article characterizes the performance of random block codes over finite-state channels and evaluates their queueing performance under maximum-likelihood decoding. In particular, classical results from information theory are revisited in the context of channels with rare transitions, and bounds on the probabilities of decoding failure are derived for random codes. This creates an analysis framework where channel dependencies within and across codewords are preserved. Such results are subsequently integrated into a queueing problem formulation. For instance, it is shown that, for random coding on the Gilbert-Elliott channel, the performance analysis based on upper bounds on error probability provides very good estimates of system performance and optimum code parameters. Overall, this study offers new insights about the impact of channel correlation on the performance of delay-aware, point-to-point communication links. It also provides novel guidelines on how to select code rates and block lengths for real-time traffic over wireless communication infrastructures

    Nonparametric Bounds and Sensitivity Analysis of Treatment Effects

    Get PDF
    This paper considers conducting inference about the effect of a treatment (or exposure) on an outcome of interest. In the ideal setting where treatment is assigned randomly, under certain assumptions the treatment effect is identifiable from the observable data and inference is straightforward. However, in other settings such as observational studies or randomized trials with noncompliance, the treatment effect is no longer identifiable without relying on untestable assumptions. Nonetheless, the observable data often do provide some information about the effect of treatment, that is, the parameter of interest is partially identifiable. Two approaches are often employed in this setting: (i) bounds are derived for the treatment effect under minimal assumptions, or (ii) additional untestable assumptions are invoked that render the treatment effect identifiable and then sensitivity analysis is conducted to assess how inference about the treatment effect changes as the untestable assumptions are varied. Approaches (i) and (ii) are considered in various settings, including assessing principal strata effects, direct and indirect effects and effects of time-varying exposures. Methods for drawing formal inference about partially identified parameters are also discussed.Comment: Published in at http://dx.doi.org/10.1214/14-STS499 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore