3,750 research outputs found

    Bounded time computation on metric spaces and Banach spaces

    Full text link
    We extend the framework by Kawamura and Cook for investigating computational complexity for operators occurring in analysis. This model is based on second-order complexity theory for functions on the Baire space, which is lifted to metric spaces by means of representations. Time is measured in terms of the length of the input encodings and the required output precision. We propose the notions of a complete representation and of a regular representation. We show that complete representations ensure that any computable function has a time bound. Regular representations generalize Kawamura and Cook's more restrictive notion of a second-order representation, while still guaranteeing fast computability of the length of the encodings. Applying these notions, we investigate the relationship between purely metric properties of a metric space and the existence of a representation such that the metric is computable within bounded time. We show that a bound on the running time of the metric can be straightforwardly translated into size bounds of compact subsets of the metric space. Conversely, for compact spaces and for Banach spaces we construct a family of admissible, complete, regular representations that allow for fast computation of the metric and provide short encodings. Here it is necessary to trade the time bound off against the length of encodings

    Computable Jordan Decomposition of Linear Continuous Functionals on C[0;1]C[0;1]

    Full text link
    By the Riesz representation theorem using the Riemann-Stieltjes integral, linear continuous functionals on the set of continuous functions from the unit interval into the reals can either be characterized by functions of bounded variation from the unit interval into the reals, or by signed measures on the Borel-subsets. Each of these objects has an (even minimal) Jordan decomposition into non-negative or non-decreasing objects. Using the representation approach to computable analysis, a computable version of the Riesz representation theorem has been proved by Jafarikhah, Lu and Weihrauch. In this article we extend this result. We study the computable relation between three Banach spaces, the space of linear continuous functionals with operator norm, the space of (normalized) functions of bounded variation with total variation norm, and the space of bounded signed Borel measures with variation norm. We introduce natural representations for defining computability. We prove that the canonical linear bijections between these spaces and their inverses are computable. We also prove that Jordan decomposition is computable on each of these spaces
    corecore