14 research outputs found

    Constraint-wish and satisfied-dissatisfied: an overview of two approaches for dealing with bipolar querying

    Get PDF
    In recent years, there has been an increasing interest in dealing with user preferences in flexible database querying, expressing both positive and negative information in a heterogeneous way. This is what is usually referred to as bipolar database querying. Different frameworks have been introduced to deal with such bipolarity. In this chapter, an overview of two approaches is given. The first approach is based on mandatory and desired requirements. Hereby the complement of a mandatory requirement can be considered as a specification of what is not desired at all. So, mandatory requirements indirectly contribute to negative information (expressing what the user does not want to retrieve), whereas desired requirements can be seen as positive information (expressing what the user prefers to retrieve). The second approach is directly based on positive requirements (expressing what the user wants to retrieve), and negative requirements (expressing what the user does not want to retrieve). Both approaches use pairs of satisfaction degrees as the underlying framework but have different semantics, and thus also different operators for criteria evaluation, ranking, aggregation, etc

    Propositional Logics for the Lawvere Quantale

    Full text link
    Lawvere showed that generalised metric spaces are categories enriched over [0,][0, \infty], the quantale of the positive extended reals. The statement of enrichment is a quantitative analogue of being a preorder. Towards seeking a logic for quantitative metric reasoning, we investigate three [0,][0,\infty]-valued propositional logics over the Lawvere quantale. The basic logical connectives shared by all three logics are those that can be interpreted in any quantale, viz finite conjunctions and disjunctions, tensor (addition for the Lawvere quantale) and linear implication (here a truncated subtraction); to these we add, in turn, the constant 11 to express integer values, and scalar multiplication by a non-negative real to express general affine combinations. Quantitative equational logic can be interpreted in the third logic if we allow inference systems instead of axiomatic systems. For each of these logics we develop a natural deduction system which we prove to be decidably complete w.r.t. the quantale-valued semantics. The heart of the completeness proof makes use of the Motzkin transposition theorem. Consistency is also decidable; the proof makes use of Fourier-Motzkin elimination of linear inequalities. Strong completeness does not hold in general, even (as is known) for theories over finitely-many propositional variables; indeed even an approximate form of strong completeness in the sense of Pavelka or Ben Yaacov -- provability up to arbitrary precision -- does not hold. However, we can show it for theories axiomatized by a (not necessarily finite) set of judgements in normal form over a finite set of propositional variables when we restrict to models that do not map variables to \infty; the proof uses Hurwicz's general form of the Farkas' Lemma

    Philosophy of quantum probability:An empiricist study of its formalism and logic

    Get PDF

    Embedding theorems and finiteness properties for residuated structures and substructural logics

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2008.Paper 1. This paper establishes several algebraic embedding theorems, each of which asserts that a certain kind of residuated structure can be embedded into a richer one. In almost all cases, the original structure has a compatible involution, which must be preserved by the embedding. The results, in conjunction with previous findings, yield separative axiomatizations of the deducibility relations of various substructural formal systems having double negation and contraposition axioms. The separation theorems go somewhat further than earlier ones in the literature, which either treated fewer subsignatures or focussed on the conservation of theorems only. Paper 2. It is proved that the variety of relevant disjunction lattices has the finite embeddability property (FEP). It follows that Avron’s relevance logic RMImin has a strong form of the finite model property, so it has a solvable deducibility problem. This strengthens Avron’s result that RMImin is decidable. Paper 3. An idempotent residuated po-monoid is semiconic if it is a subdirect product of algebras in which the monoid identity t is comparable with all other elements. It is proved that the quasivariety SCIP of all semiconic idempotent commutative residuated po-monoids is locally finite. The lattice-ordered members of this class form a variety SCIL, which is not locally finite, but it is proved that SCIL has the FEP. More generally, for every relative subvariety K of SCIP, the lattice-ordered members of K have the FEP. This gives a unified explanation of the strong finite model property for a range of logical systems. It is also proved that SCIL has continuously many semisimple subvarieties, and that the involutive algebras in SCIL are subdirect products of chains. Paper 4. Anderson and Belnap’s implicational system RMO can be extended conservatively by the usual axioms for fusion and for the Ackermann truth constant t. The resulting system RMO is algebraized by the quasivariety IP of all idempotent commutative residuated po-monoids. Thus, the axiomatic extensions of RMO are in one-to-one correspondence with the relative subvarieties of IP. It is proved here that a relative subvariety of IP consists of semiconic algebras if and only if it satisfies x (x t) x. Since the semiconic algebras in IP are locally finite, it follows that when an axiomatic extension of RMO has ((p t) p) p among its theorems, then it is locally tabular. In particular, such an extension is strongly decidable, provided that it is finitely axiomatized

    Foundations of Quantum Theory: From Classical Concepts to Operator Algebras

    Get PDF
    Quantum physics; Mathematical physics; Matrix theory; Algebr
    corecore