41 research outputs found

    Supporting Internet Access and Quality of Service in Distributed Wireless Ad Hoc Networks

    Get PDF
    In this era of wireless hysteria, with continuous technological advances in wireless communication and new wireless technologies becoming standardized at a fast rate, we can expect an increased interest for wireless networks, such as ad hoc and mesh networks. These networks operate in a distributed manner, independent of any centralized device. In order to realize the practical benefits of ad hoc networks, two challenges (among others) need to be considered: distributed QoS guarantees and multi-hop Internet access. In this thesis we present conceivable solutions to both of these problems. An autonomous, stand-alone ad hoc network is useful in many cases, such as search and rescue operations and meetings where participants wish to quickly share information. However, an ad hoc network connected to the Internet is even more desirable. This is because Internet plays an important role in the daily life of many people by offering a broad range of services. In this thesis we present AODV+, which is our solution to achieve this network interconnection between a wireless ad hoc network and the wired Internet. Providing QoS in distributed wireless networks is another challenging, but yet important, task mainly because there is no central device controlling the medium access. In this thesis we propose EDCA with Resource Reservation (EDCA/RR), which is a fully distributed MAC scheme that provides QoS guarantees by allowing applications with strict QoS requirements to reserve transmission time for contention-free medium access. Our scheme is compatible with existing standards and provides both parameterized and prioritized QoS. In addition, we present the Distributed Deterministic Channel Access (DDCA) scheme, which is a multi-hop extension of EDCA/RR and can be used in wireless mesh networks. Finally, we have complemented our simulation studies with real-world ad hoc and mesh network experiments. With the experience from these experiments, we obtained a clear insight into the limitations of wireless channels. We could conclude that a wise design of the network architecture that limits the number of consecutive wireless hops may result in a wireless mesh network that is able to satisfy users’ needs. Moreover, by using QoS mechanisms like EDCA/RR or DDCA we are able to provide different priorities to traffic flows and reserve resources for the most time-critical applications

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Quality of service based distributed control of wireless networks

    Get PDF

    Video QoS/QoE over IEEE802.11n/ac: A Contemporary Survey

    Get PDF
    The demand for video applications over wireless networks has tremendously increased, and IEEE 802.11 standards have provided higher support for video transmission. However, providing Quality of Service (QoS) and Quality of Experience (QoE) for video over WLAN is still a challenge due to the error sensitivity of compressed video and dynamic channels. This thesis presents a contemporary survey study on video QoS/QoE over WLAN issues and solutions. The objective of the study is to provide an overview of the issues by conducting a background study on the video codecs and their features and characteristics, followed by studying QoS and QoE support in IEEE 802.11 standards. Since IEEE 802.11n is the current standard that is mostly deployed worldwide and IEEE 802.11ac is the upcoming standard, this survey study aims to investigate the most recent video QoS/QoE solutions based on these two standards. The solutions are divided into two broad categories, academic solutions, and vendor solutions. Academic solutions are mostly based on three main layers, namely Application, Media Access Control (MAC) and Physical (PHY) which are further divided into two major categories, single-layer solutions, and cross-layer solutions. Single-layer solutions are those which focus on a single layer to enhance the video transmission performance over WLAN. Cross-layer solutions involve two or more layers to provide a single QoS solution for video over WLAN. This thesis has also presented and technically analyzed QoS solutions by three popular vendors. This thesis concludes that single-layer solutions are not directly related to video QoS/QoE, and cross-layer solutions are performing better than single-layer solutions, but they are much more complicated and not easy to be implemented. Most vendors rely on their network infrastructure to provide QoS for multimedia applications. They have their techniques and mechanisms, but the concept of providing QoS/QoE for video is almost the same because they are using the same standards and rely on Wi-Fi Multimedia (WMM) to provide QoS

    Improving the QoS of IEEE 802.11e networks through imprecise computation

    Get PDF
    IEEE 802.11e HCCA reference scheduler is based on fixed value parameters that do not adapt to traffic changes, thus quality of service (QoS) for multimedia applications is a challenge, especially in the case of variable bit rate (VBR) streams, that requires dynamic resource assignment. This paper is focused on immediate dynamic TXOP HCCA (IDTH) scheduling algorithm and its new evolution immediate dynamic TXOP HCCA plus (IDTH+). Their reclaiming mechanisms, refined by the monitoring of transmission duration, aim at overcoming the limits of fixed preallocation of resources by varying the stations transmission time and avoiding waste of resources. Simulations and theoretical analysis based on the imprecise computation model show that the integration of IDTH and IDTH+ can achieve improved network performance in terms of transmission queues length, mean access delay and packets drop rate, and to efficiently manage bursty traffic. Moreover, the performance improvements of IDTH+ with respect to IDTH are highlighted

    QOS routing for mobile Ad Hoc networks using genetic algorithm

    Get PDF
    Mobile Ad Hoc Networks (MANETs) are a class of infrastructure less network architecture which are formed by a collection of mobile nodes that communicate with each other using multihop wireless links. They eliminate the need for central management, hence each node must operate cooperatively to successfully maintain the network. Each node performs as a source, a sink and a router. Future applications of MANETs are expected to be based on all-IP architecture, carrying a multitude of real-time multimedia applications such as voice, video and data. It would be necessary for MANETs to have an efficient routing and quality of service (QoS) mechanism to support diverse applications. This thesis proposes a set of cooperative protocols that provide support for QoS routing. The first is the on-demand, Non-Disjoint Multiple Routes Discovery protocol (NDMRD). NDMRD allows the establishment of multiple paths with node non-disjoint between source and destination node. It returns to the source a collection of routes with the QoS parameters. The second part of the protocol is the Node State Monitoring protocol for the purpose of monitoring, acquisition, dissemination and accumulation of QoS route information. The third part of the protocol implements the QoS route selection based on a Genetic Algorithm. The GA is implemented online with predetermined initial population and weighted-sum fitness function which operates simultaneously on the node bandwidth, media access delay, end to end delay and the node connectivity index (n). The term node connectivity index is a numerical value designed to predict comparatively the longest time a node-pair might be connected wirelessly.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore