16,643 research outputs found

    On First-Order Topological Queries

    Get PDF
    International audienceOne important class of spatial database queries is the class of topological queries, that is, queries invariant under homeomorphisms. We study topological queries expressible in the standard query language on spatial databases, rst-order logic with various amounts of arithmetic. Our main technical result is a combinato-rial characterization of the expressive power of topological rst-order logic on regular spatial databases

    PReaCH: A Fast Lightweight Reachability Index using Pruning and Contraction Hierarchies

    Full text link
    We develop the data structure PReaCH (for Pruned Reachability Contraction Hierarchies) which supports reachability queries in a directed graph, i.e., it supports queries that ask whether two nodes in the graph are connected by a directed path. PReaCH adapts the contraction hierarchy speedup techniques for shortest path queries to the reachability setting. The resulting approach is surprisingly simple and guarantees linear space and near linear preprocessing time. Orthogonally to that, we improve existing pruning techniques for the search by gathering more information from a single DFS-traversal of the graph. PReaCH-indices significantly outperform previous data structures with comparable preprocessing cost. Methods with faster queries need significantly more preprocessing time in particular for the most difficult instances

    High-Performance Reachability Query Processing under Index Size Restrictions

    Full text link
    In this paper, we propose a scalable and highly efficient index structure for the reachability problem over graphs. We build on the well-known node interval labeling scheme where the set of vertices reachable from a particular node is compactly encoded as a collection of node identifier ranges. We impose an explicit bound on the size of the index and flexibly assign approximate reachability ranges to nodes of the graph such that the number of index probes to answer a query is minimized. The resulting tunable index structure generates a better range labeling if the space budget is increased, thus providing a direct control over the trade off between index size and the query processing performance. By using a fast recursive querying method in conjunction with our index structure, we show that in practice, reachability queries can be answered in the order of microseconds on an off-the-shelf computer - even for the case of massive-scale real world graphs. Our claims are supported by an extensive set of experimental results using a multitude of benchmark and real-world web-scale graph datasets.Comment: 30 page

    TopCom: Index for Shortest Distance Query in Directed Graph

    Get PDF
    Finding shortest distance between two vertices in a graph is an important problem due to its numerous applications in diverse domains, including geo-spatial databases, social network analysis, and information retrieval. Classical algorithms (such as, Dijkstra) solve this problem in polynomial time, but these algorithms cannot provide real-time response for a large number of bursty queries on a large graph. So, indexing based solutions that pre-process the graph for efficiently answering (exactly or approximately) a large number of distance queries in real-time is becoming increasingly popular. Existing solutions have varying performance in terms of index size, index building time, query time, and accuracy. In this work, we propose T OP C OM , a novel indexing-based solution for exactly answering distance queries. Our experiments with two of the existing state-of-the-art methods (IS-Label and TreeMap) show the superiority of T OP C OM over these two methods considering scalability and query time. Besides, indexing of T OP C OM exploits the DAG (directed acyclic graph) structure in the graph, which makes it significantly faster than the existing methods if the SCCs (strongly connected component) of the input graph are relatively small

    Quantum query complexity of minor-closed graph properties

    Get PDF
    We study the quantum query complexity of minor-closed graph properties, which include such problems as determining whether an nn-vertex graph is planar, is a forest, or does not contain a path of a given length. We show that most minor-closed properties---those that cannot be characterized by a finite set of forbidden subgraphs---have quantum query complexity \Theta(n^{3/2}). To establish this, we prove an adversary lower bound using a detailed analysis of the structure of minor-closed properties with respect to forbidden topological minors and forbidden subgraphs. On the other hand, we show that minor-closed properties (and more generally, sparse graph properties) that can be characterized by finitely many forbidden subgraphs can be solved strictly faster, in o(n^{3/2}) queries. Our algorithms are a novel application of the quantum walk search framework and give improved upper bounds for several subgraph-finding problems.Comment: v1: 25 pages, 2 figures. v2: 26 page
    • …
    corecore