40,083 research outputs found

    Spanning trees of 3-uniform hypergraphs

    Full text link
    Masbaum and Vaintrob's "Pfaffian matrix tree theorem" implies that counting spanning trees of a 3-uniform hypergraph (abbreviated to 3-graph) can be done in polynomial time for a class of "3-Pfaffian" 3-graphs, comparable to and related to the class of Pfaffian graphs. We prove a complexity result for recognizing a 3-Pfaffian 3-graph and describe two large classes of 3-Pfaffian 3-graphs -- one of these is given by a forbidden subgraph characterization analogous to Little's for bipartite Pfaffian graphs, and the other consists of a class of partial Steiner triple systems for which the property of being 3-Pfaffian can be reduced to the property of an associated graph being Pfaffian. We exhibit an infinite set of partial Steiner triple systems that are not 3-Pfaffian, none of which can be reduced to any other by deletion or contraction of triples. We also find some necessary or sufficient conditions for the existence of a spanning tree of a 3-graph (much more succinct than can be obtained by the currently fastest polynomial-time algorithm of Gabow and Stallmann for finding a spanning tree) and a superexponential lower bound on the number of spanning trees of a Steiner triple system.Comment: 34 pages, 9 figure

    An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles

    Full text link
    The Lovasz Local Lemma is a seminal result in probabilistic combinatorics. It gives a sufficient condition on a probability space and a collection of events for the existence of an outcome that simultaneously avoids all of those events. Finding such an outcome by an efficient algorithm has been an active research topic for decades. Breakthrough work of Moser and Tardos (2009) presented an efficient algorithm for a general setting primarily characterized by a product structure on the probability space. In this work we present an efficient algorithm for a much more general setting. Our main assumption is that there exist certain functions, called resampling oracles, that can be invoked to address the undesired occurrence of the events. We show that, in all scenarios to which the original Lovasz Local Lemma applies, there exist resampling oracles, although they are not necessarily efficient. Nevertheless, for essentially all known applications of the Lovasz Local Lemma and its generalizations, we have designed efficient resampling oracles. As applications of these techniques, we present new results for packings of Latin transversals, rainbow matchings and rainbow spanning trees.Comment: 47 page

    Distributed Approximation of Minimum Routing Cost Trees

    Full text link
    We study the NP-hard problem of approximating a Minimum Routing Cost Spanning Tree in the message passing model with limited bandwidth (CONGEST model). In this problem one tries to find a spanning tree of a graph GG over nn nodes that minimizes the sum of distances between all pairs of nodes. In the considered model every node can transmit a different (but short) message to each of its neighbors in each synchronous round. We provide a randomized (2+ϵ)(2+\epsilon)-approximation with runtime O(D+lognϵ)O(D+\frac{\log n}{\epsilon}) for unweighted graphs. Here, DD is the diameter of GG. This improves over both, the (expected) approximation factor O(logn)O(\log n) and the runtime O(Dlog2n)O(D\log^2 n) of the best previously known algorithm. Due to stating our results in a very general way, we also derive an (optimal) runtime of O(D)O(D) when considering O(logn)O(\log n)-approximations as done by the best previously known algorithm. In addition we derive a deterministic 22-approximation
    corecore