22,866 research outputs found

    A Fast Two-Stage Classification Method of Support Vector Machines

    Get PDF
    Classification of high-dimensional data generally requires enormous processing time. In this paper, we present a fast two-stage method of support vector machines, which includes a feature reduction algorithm and a fast multiclass method. First, principal component analysis is applied to the data for feature reduction and decorrelation, and then a feature selection method is used to further reduce feature dimensionality. The criterion based on Bhattacharyya distance is revised to get rid of influence of some binary problems with large distance. Moreover, a simple method is proposed to reduce the processing time of multiclass problems, where one binary SVM with the fewest support vectors (SVs) will be selected iteratively to exclude the less similar class until the final result is obtained. Experimented with the hyperspectral data 92AV3C, the results demonstrate that the proposed method can achieve a much faster classification and preserve the high classification accuracy of SVMs

    Feature selection for an SVM based webpage classifier

    Get PDF

    Automatic annotation of X-ray images: a study on attribute selection

    Get PDF
    Advances in the medical imaging technology has lead to an exponential growth in the number of digital images that need to be acquired, analyzed, classified, stored and retrieved in medical centers. As a result, medical image classification and retrieval has recently gained high interest in the scientific community. Despite several attempts, the proposed solutions are still far from being sufficiently accurate for real-life implementations. In a previous work, performance of different feature types were investigated in a SVM-based learning framework for classification. of X-Ray images into classes corresponding to body parts and local binary patterns were observed to outperform others. In this paper, we extend that work by exploring the effect of attribute selection on the classification performance. Our experiments show that principal component analysis based attribute selection manifests prediction values that are comparable to the baseline (all-features case) with considerably smaller subsets of original features, inducing lower processing times and reduced storage space

    Automatic Recognition of Mammal Genera on Camera-Trap Images using Multi-Layer Robust Principal Component Analysis and Mixture Neural Networks

    Full text link
    The segmentation and classification of animals from camera-trap images is due to the conditions under which the images are taken, a difficult task. This work presents a method for classifying and segmenting mammal genera from camera-trap images. Our method uses Multi-Layer Robust Principal Component Analysis (RPCA) for segmenting, Convolutional Neural Networks (CNNs) for extracting features, Least Absolute Shrinkage and Selection Operator (LASSO) for selecting features, and Artificial Neural Networks (ANNs) or Support Vector Machines (SVM) for classifying mammal genera present in the Colombian forest. We evaluated our method with the camera-trap images from the Alexander von Humboldt Biological Resources Research Institute. We obtained an accuracy of 92.65% classifying 8 mammal genera and a False Positive (FP) class, using automatic-segmented images. On the other hand, we reached 90.32% of accuracy classifying 10 mammal genera, using ground-truth images only. Unlike almost all previous works, we confront the animal segmentation and genera classification in the camera-trap recognition. This method shows a new approach toward a fully-automatic detection of animals from camera-trap images
    • …
    corecore