2,055 research outputs found

    New Generation Indonesian Endemic Cattle Classification: MobileNetV2 and ResNet50

    Get PDF
    Cattle are an essential source of animal food globally, and each country possesses unique endemic cattle races. However, categorizing cattle, especially in countries like Indonesia with a large cattle population, presents challenges due to costs and subjectivity when using human experts. This research utilizes Computer Vision (CV) for image data classification to address this urgent need for automatic categorization. The main objective of this study is to develop a mobile-friendly model using CV techniques that can accurately detect and classify Indonesian endemic cattle races, such as Limosin, Madura, Pegon, and Simental. To achieve this, an object localization approach is employed to extract multiple features from distinct regions of each cattle image, including the head, ear, horn, and muzzle areas. The authors evaluate two CV algorithms, ResNet50 and MobileNetV2, to assess their performance in cattle race classification. The dataset used is facial photos of 147 cows. The results indicate that ResNet50 outperforms MobileNetV2, achieving a training data accuracy of 83.33% compared to MobileNetV2's 77.08%. Moreover, the validation accuracy of ResNet50 (76.92%) significantly surpasses MobileNetV2's (38.46%). The novel contribution of this research lies in developing a cost-effective and efficient solution for identifying endemic cattle breeds in Indonesia. The mobile-friendly model based on ResNet50 demonstrates superior accuracy, enabling cattle farmers and researchers to categorize cattle races with higher precision, reducing manual effort, and minimizing costs. In conclusion, this research provides a valuable advancement in automatic cattle categorization using CV techniques. By offering a practical and accurate model that considers Indonesia's specific cattle breeding conditions, this study contributes to the sustainable management and conservation of endemic cattle races while enhancing the efficiency of cattle farming practices

    Sensing solutions for improving the performance, health and wellbeing of small ruminants

    Get PDF
    Diversity of production systems and specific socio-economic barriers are key reasons explaining why the implementation of new technologies in small ruminants, despite being needed and beneficial for farmers, is harder than in other livestock species. There are, however, helpful peculiarities where small ruminants are concerned: the compulsory use of electronic identification created a unique scenario in Europe in which all small ruminant breeding stock became searchable by appropriate sensing solutions, and the largest small ruminant population in the world is located in Asia, close to the areas producing new technologies. Notwithstanding, only a few research initiatives and literature reviews have addressed the development of new technologies in small ruminants. This Research Reflection focuses on small ruminants (with emphasis on dairy goats and sheep) and reviews in a non-exhaustive way the basic concepts, the currently available sensor solutions and the structure and elements needed for the implementation of sensor-based husbandry decision support. Finally, some examples of results obtained using several sensor solutions adapted from large animals or newly developed for small ruminants are discussed. Significant room for improvement is recognized and a large number of multiple-sensor solutions are expected to be developed in the relatively near future

    Enhancing Farm-Level Decision Making through Innovation

    Get PDF

    Farmers' Perspectives of the Benefits and Risks in Precision Livestock Farming in the EU Pig and Poultry Sectors

    Get PDF
    Simple Summary Smart farming is a concept of agricultural innovation that combines technological, social, economic and institutional changes. It employs novel practices of technologies and farm management at various levels (specifically with a focus on the system perspective) and scales of agricultural production, helping the industry meet the challenges stemming from immense food production demands, environmental impact mitigation and reductions in the workforce. Precision Livestock Farming (PLF) systems will help the industry meet consumer expectations for more environmentally and welfare-friendly production. However, the overwhelming majority of these new technologies originate from outside the farm sector. The adoption of new technologies is affected by the development, dissemination and application of new methodologies, technologies and regulations at the farm level, as well as quantified business models. Subsequently, the utilization of PLF in the pig and especially the poultry sectors should be advocated (the latter due to the foreseen increase in meat production). Therefore, more significant research efforts than those that currently exist are mainly required in the poultry industry. The investigation of farmers' attitudes and concerns about the acceptance of technological solutions in the livestock sector should be integrally incorporated into any technological development.Abstract More efficient livestock production systems are necessary, considering that only 41% of global meat demand will be met by 2050. Moreover, the COVID-19 pandemic crisis has clearly illustrated the necessity of building sustainable and stable agri-food systems. Precision Livestock Farming (PLF) offers the continuous capacity of agriculture to contribute to overall human and animal welfare by providing sufficient goods and services through the application of technical innovations like digitalization. However, adopting new technologies is a challenging issue for farmers, extension services, agri-business and policymakers. We present a review of operational concepts and technological solutions in the pig and poultry sectors, as reflected in 41 and 16 European projects from the last decade, respectively. The European trend of increasing broiler-meat production, which is soon to outpace pork, stresses the need for more outstanding research efforts in the poultry industry. We further present a review of farmers' attitudes and obstacles to the acceptance of technological solutions in the pig and poultry sectors using examples and lessons learned from recent European projects. Despite the low resonance at the research level, the investigation of farmers' attitudes and concerns regarding the acceptance of technological solutions in the livestock sector should be incorporated into any technological development

    Characterising sheep vocals using a machine learning algorithm : A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Applied Science at Lincoln University

    Get PDF
    New Zealand’s economy is mainly dependent on the farming sector and the sheep sector is one of the most important farming sectors, playing a backbone role to the agricultural industry and placing New Zealand among the top five sheep exporter countries in the world. International consumer trends show concerns over the well-being of animals before slaughter and research also indicates potential negative effects on meat quality of stressed animals. Indicators for sheep well-being have largely been limited to physical weight gain and visually observable behaviour and appearance. There has been recent interest but little substantive research on sheep vocalisation as a means of monitoring sheep well-being. This assumes that sheep vocalisation can be classified as representing different states of well-being. Therefore, this thesis investigated the potential to be able to classify sheep vocalisations in a way that would enable automated assessment of the well-being of New Zealand sheep using recorded vocalisations. A supervised machine learning approach was used to classify the sheep vocals into happy and unhappy classes. Sheep sounds were collected from a New Zealand Ryeland sheep stud farm and online databases. After collection, these sounds were labelled by an expert, pre-processed to make them clean from unwanted background sound noises and features were extracted and selected for classification. Models were built and trained and tested. Model use in this research shows that sheep sounds were classified into happy and unhappy classes with an accuracy of 87.5%, for the sheep vocals used in this research. Through demonstrating the ability for automated classification of sheep vocalisations this research opens the door for further study on the well-being of sheep through their vocalisations. Future researchers could also collect larger vocal data sets across different breeds to test for breed-related variance in vocalisations.. This may enable future sheep well-being certification systems to be established to assure consumers of the well-being of pre-slaughter sheep life
    • …
    corecore