2,451 research outputs found

    Optimal Approximation of Elliptic Problems by Linear and Nonlinear Mappings III: Frames

    Full text link
    We study the optimal approximation of the solution of an operator equation by certain n-term approximations with respect to specific classes of frames. We study worst case errors and the optimal order of convergence and define suitable nonlinear frame widths. The main advantage of frames compared to Riesz basis, which were studied in our earlier papers, is the fact that we can now handle arbitrary bounded Lipschitz domains--also for the upper bounds. Key words: elliptic operator equation, worst case error, frames, nonlinear approximation, best n-term approximation, manifold width, Besov spaces on Lipschitz domainsComment: J. Complexity, to appear. Final version, minor mistakes correcte

    Shearlets and Optimally Sparse Approximations

    Full text link
    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations of such functions. Recently, cartoon-like images were introduced in 2D and 3D as a suitable model class, and approximation properties were measured by considering the decay rate of the L2L^2 error of the best NN-term approximation. Shearlet systems are to date the only representation system, which provide optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field.Comment: in "Shearlets: Multiscale Analysis for Multivariate Data", Birkh\"auser-Springe
    • …
    corecore