437 research outputs found

    New computer-based search strategies for extreme functions of the Gomory--Johnson infinite group problem

    Full text link
    We describe new computer-based search strategies for extreme functions for the Gomory--Johnson infinite group problem. They lead to the discovery of new extreme functions, whose existence settles several open questions.Comment: 54 pages, many figure

    Yet harder knapsack problems

    Get PDF
    AbstractAlready 30 years ago, Chvátal has shown that some instances of the zero-one knapsack problem cannot be solved in polynomial time using a particular type of branch-and-bound algorithms based on relaxations of linear programs together with some rudimentary cutting-plane arguments as bounding rules. We extend this result by proving an exponential lower bound in a more general class of branch-and-bound and dynamic programming algorithms which are allowed to use memoization and arbitrarily powerful bound rules to detect and remove subproblems leading to no optimal solution

    Scheduling Monotone Moldable Jobs in Linear Time

    Full text link
    A moldable job is a job that can be executed on an arbitrary number of processors, and whose processing time depends on the number of processors allotted to it. A moldable job is monotone if its work doesn't decrease for an increasing number of allotted processors. We consider the problem of scheduling monotone moldable jobs to minimize the makespan. We argue that for certain compact input encodings a polynomial algorithm has a running time polynomial in n and log(m), where n is the number of jobs and m is the number of machines. We describe how monotony of jobs can be used to counteract the increased problem complexity that arises from compact encodings, and give tight bounds on the approximability of the problem with compact encoding: it is NP-hard to solve optimally, but admits a PTAS. The main focus of this work are efficient approximation algorithms. We describe different techniques to exploit the monotony of the jobs for better running times, and present a (3/2+{\epsilon})-approximate algorithm whose running time is polynomial in log(m) and 1/{\epsilon}, and only linear in the number n of jobs

    Equal-Subset-Sum Faster Than the Meet-in-the-Middle

    Get PDF
    In the Equal-Subset-Sum problem, we are given a set S of n integers and the problem is to decide if there exist two disjoint nonempty subsets A,B subseteq S, whose elements sum up to the same value. The problem is NP-complete. The state-of-the-art algorithm runs in O^*(3^(n/2)) <= O^*(1.7321^n) time and is based on the meet-in-the-middle technique. In this paper, we improve upon this algorithm and give O^*(1.7088^n) worst case Monte Carlo algorithm. This answers a question suggested by Woeginger in his inspirational survey. Additionally, we analyse the polynomial space algorithm for Equal-Subset-Sum. A naive polynomial space algorithm for Equal-Subset-Sum runs in O^*(3^n) time. With read-only access to the exponentially many random bits, we show a randomized algorithm running in O^*(2.6817^n) time and polynomial space
    • …
    corecore