100,037 research outputs found

    A Large-scale Distributed Video Parsing and Evaluation Platform

    Full text link
    Visual surveillance systems have become one of the largest data sources of Big Visual Data in real world. However, existing systems for video analysis still lack the ability to handle the problems of scalability, expansibility and error-prone, though great advances have been achieved in a number of visual recognition tasks and surveillance applications, e.g., pedestrian/vehicle detection, people/vehicle counting. Moreover, few algorithms explore the specific values/characteristics in large-scale surveillance videos. To address these problems in large-scale video analysis, we develop a scalable video parsing and evaluation platform through combining some advanced techniques for Big Data processing, including Spark Streaming, Kafka and Hadoop Distributed Filesystem (HDFS). Also, a Web User Interface is designed in the system, to collect users' degrees of satisfaction on the recognition tasks so as to evaluate the performance of the whole system. Furthermore, the highly extensible platform running on the long-term surveillance videos makes it possible to develop more intelligent incremental algorithms to enhance the performance of various visual recognition tasks.Comment: Accepted by Chinese Conference on Intelligent Visual Surveillance 201

    Recognition of nonmanual markers in American Sign Language (ASL) using non-parametric adaptive 2D-3D face tracking

    Full text link
    This paper addresses the problem of automatically recognizing linguistically significant nonmanual expressions in American Sign Language from video. We develop a fully automatic system that is able to track facial expressions and head movements, and detect and recognize facial events continuously from video. The main contributions of the proposed framework are the following: (1) We have built a stochastic and adaptive ensemble of face trackers to address factors resulting in lost face track; (2) We combine 2D and 3D deformable face models to warp input frames, thus correcting for any variation in facial appearance resulting from changes in 3D head pose; (3) We use a combination of geometric features and texture features extracted from a canonical frontal representation. The proposed new framework makes it possible to detect grammatically significant nonmanual expressions from continuous signing and to differentiate successfully among linguistically significant expressions that involve subtle differences in appearance. We present results that are based on the use of a dataset containing 330 sentences from videos that were collected and linguistically annotated at Boston University

    Stability and sensitivity of Learning Analytics based prediction models

    Get PDF
    Learning analytics seek to enhance the learning processes through systematic measurements of learning related data and to provide informative feedback to learners and educators. Track data from Learning Management Systems (LMS) constitute a main data source for learning analytics. This empirical contribution provides an application of Buckingham Shum and Deakin Crick’s theoretical framework of dispositional learning analytics: an infrastructure that combines learning dispositions data with data extracted from computer-assisted, formative assessments and LMSs. In two cohorts of a large introductory quantitative methods module, 2049 students were enrolled in a module based on principles of blended learning, combining face-to-face Problem-Based Learning sessions with e-tutorials. We investigated the predictive power of learning dispositions, outcomes of continuous formative assessments and other system generated data in modelling student performance and their potential to generate informative feedback. Using a dynamic, longitudinal perspective, computer-assisted formative assessments seem to be the best predictor for detecting underperforming students and academic performance, while basic LMS data did not substantially predict learning. If timely feedback is crucial, both use-intensity related track data from e-tutorial systems, and learning dispositions, are valuable sources for feedback generation

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    • …
    corecore