346 research outputs found

    Degrees of Freedom of Time Correlated MISO Broadcast Channel with Delayed CSIT

    Full text link
    We consider the time correlated multiple-input single-output (MISO) broadcast channel where the transmitter has imperfect knowledge on the current channel state, in addition to delayed channel state information. By representing the quality of the current channel state information as P^-{\alpha} for the signal-to-noise ratio P and some constant {\alpha} \geq 0, we characterize the optimal degree of freedom region for this more general two-user MISO broadcast correlated channel. The essential ingredients of the proposed scheme lie in the quantization and multicasting of the overheard interferences, while broadcasting new private messages. Our proposed scheme smoothly bridges between the scheme recently proposed by Maddah-Ali and Tse with no current state information and a simple zero-forcing beamforming with perfect current state information.Comment: revised and final version, to appear in IEEE transactions on Information Theor

    Sum-Rate Maximization for Linearly Precoded Downlink Multiuser MISO Systems with Partial CSIT: A Rate-Splitting Approach

    Full text link
    This paper considers the Sum-Rate (SR) maximization problem in downlink MU-MISO systems under imperfect Channel State Information at the Transmitter (CSIT). Contrary to existing works, we consider a rather unorthodox transmission scheme. In particular, the message intended to one of the users is split into two parts: a common part which can be recovered by all users, and a private part recovered by the corresponding user. On the other hand, the rest of users receive their information through private messages. This Rate-Splitting (RS) approach was shown to boost the achievable Degrees of Freedom (DoF) when CSIT errors decay with increased SNR. In this work, the RS strategy is married with linear precoder design and optimization techniques to achieve a maximized Ergodic SR (ESR) performance over the entire range of SNRs. Precoders are designed based on partial CSIT knowledge by solving a stochastic rate optimization problem using means of Sample Average Approximation (SAA) coupled with the Weighted Minimum Mean Square Error (WMMSE) approach. Numerical results show that in addition to the ESR gains, the benefits of RS also include relaxed CSIT quality requirements and enhanced achievable rate regions compared to conventional transmission with NoRS.Comment: accepted to IEEE Transactions on Communication

    Ergodic rate for fading interference channels with proper and improper Gaussian signaling

    Get PDF
    This paper studies the performance of improper Gaussian signaling (IGS) over a 2-user Rayleigh single-input single-output (SISO) interference channel, treating interference as noise. We assume that the receivers have perfect channel state information (CSI), while the transmitters have access to only statistical CSI. Under these assumptions, we consider a signaling scheme, which we refer to as proper/improper Gaussian signaling or PGS/IGS, where at most one user may employ IGS. For the Rayleigh fading channel model, we characterize the statistical distribution of the signal-to-interference-plus-noise ratio at each receiver and derive closed-form expressions for the ergodic rates. By adapting the powers, we characterize the Pareto boundary of the ergodic rate region for the 2-user fading IC. The ergodic transmission rates can be attained using fixed-rate codebooks and no optimization is involved. Our results show that, in the moderate and strong interference regimes, the proposed PGS/IGS scheme improves the performance with respect to the PGS scheme. Additionally, we numerically compute the ergodic rate region of the full IGS scheme when both users can employ IGS and their transmission parameters are optimized by an exhaustive search. Our results suggest that most of the Pareto optimal points for the 2-user fading IC channel are attained when either both users transmit PGS or when one transmits PGS and the other transmits maximally improper Gaussian signals and time sharing is allowed.The work of M. Soleymani, C. Lameiro and P. J. Schreier was supported by the German Research Foundation (DFG) under grants LA 4107/1-1, SCHR 1384/7-1 and SCHR 1384/8-1. The work of I. Santamaria was supported by MINECO of Spain and AEI/FEDER funds of the E.U., under grant TEC2016-75067-C4-4-R (CARMEN)
    • …
    corecore