14,482 research outputs found

    When Do Envy-Free Allocations Exist?

    Full text link
    We consider a fair division setting in which mm indivisible items are to be allocated among nn agents, where the agents have additive utilities and the agents' utilities for individual items are independently sampled from a distribution. Previous work has shown that an envy-free allocation is likely to exist when m=Ω(nlogn)m=\Omega(n\log n) but not when m=n+o(n)m=n+o(n), and left open the question of determining where the phase transition from non-existence to existence occurs. We show that, surprisingly, there is in fact no universal point of transition---instead, the transition is governed by the divisibility relation between mm and nn. On the one hand, if mm is divisible by nn, an envy-free allocation exists with high probability as long as m2nm\geq 2n. On the other hand, if mm is not "almost" divisible by nn, an envy-free allocation is unlikely to exist even when m=Θ(nlogn/loglogn)m=\Theta(n\log n/\log\log n).Comment: Appears in the 33rd AAAI Conference on Artificial Intelligence (AAAI), 201

    On Interim Envy-Free Allocation Lotteries

    Get PDF
    With very few exceptions, recent research in fair division has mostly focused on deterministic allocations. Deviating from this trend, we study the fairness notion of interim envy-freeness (iEF) for lotteries over allocations, which serves as a sweet spot between the too stringent notion of ex-post envy-freeness and the very weak notion of ex-ante envy-freeness. iEF is a natural generalization of envy-freeness to random allocations in the sense that a deterministic envy-free allocation is iEF (when viewed as a degenerate lottery). It is also certainly meaningful as it allows for a richer solution space, which includes solutions that are provably better than envy-freeness according to several criteria. Our analysis relates iEF to other fairness notions as well, and reveals tradeoffs between iEF and efficiency. Even though several of our results apply to general fair division problems, we are particularly interested in instances with equal numbers of agents and items where allocations are perfect matchings of the items to the agents. Envy-freeness can be trivially decided and (when it can be achieved, it) implies full efficiency in this setting. Although computing iEF allocations in matching allocation instances is considerably more challenging, we show how to compute them in polynomial time, while also maximizing several efficiency objectives. Our algorithms use the ellipsoid method for linear programming and efficient solutions to a novel variant of the bipartite matching problem as a separation oracle. We also study the extension of interim envy-freeness notion when payments to or from the agents are allowed. We present a series of results on two optimization problems, including a generalization of the classical rent division problem to random allocations using interim envy-freeness as the solution concept

    Fair Division of a Graph

    Full text link
    We consider fair allocation of indivisible items under an additional constraint: there is an undirected graph describing the relationship between the items, and each agent's share must form a connected subgraph of this graph. This framework captures, e.g., fair allocation of land plots, where the graph describes the accessibility relation among the plots. We focus on agents that have additive utilities for the items, and consider several common fair division solution concepts, such as proportionality, envy-freeness and maximin share guarantee. While finding good allocations according to these solution concepts is computationally hard in general, we design efficient algorithms for special cases where the underlying graph has simple structure, and/or the number of agents -or, less restrictively, the number of agent types- is small. In particular, despite non-existence results in the general case, we prove that for acyclic graphs a maximin share allocation always exists and can be found efficiently.Comment: 9 pages, long version of accepted IJCAI-17 pape

    Asymptotic Existence of Proportionally Fair Allocations

    Full text link
    Fair division has long been an important problem in the economics literature. In this note, we consider the existence of proportionally fair allocations of indivisible goods, i.e., allocations of indivisible goods in which every agent gets at least her proportionally fair share according to her own utility function. We show that when utilities are additive and utilities for individual goods are drawn independently at random from a distribution, proportionally fair allocations exist with high probability if the number of goods is a multiple of the number of agents or if the number of goods grows asymptotically faster than the number of agents

    Ascending auctions and Walrasian equilibrium

    Full text link
    We present a family of submodular valuation classes that generalizes gross substitute. We show that Walrasian equilibrium always exist for one class in this family, and there is a natural ascending auction which finds it. We prove some new structural properties on gross-substitute auctions which, in turn, show that the known ascending auctions for this class (Gul-Stacchetti and Ausbel) are, in fact, identical. We generalize these two auctions, and provide a simple proof that they terminate in a Walrasian equilibrium

    Internet Advertising and the Generalized Second Price Auction: Selling Billions of Dollars Worth of Keywords

    Get PDF
    We investigate the "generalized second price" auction (GSP), a new mechanism which is used by search engines to sell online advertising that most Internet users encounter daily. GSP is tailored to its unique environment, and neither the mechanism nor the environment have previously been studied in the mechanism design literature. Although GSP looks similar to the Vickrey-Clarke-Groves (VCG) mechanism, its properties are very different. In particular, unlike the VCG mechanism, GSP generally does not have an equilibrium in dominant strategies, and truth-telling is not an equilibrium of GSP. To analyze the properties of GSP in a dynamic environment, we describe the generalized English auction that corresponds to the GSP and show that it has a unique equilibrium. This is an ex post equilibrium that results in the same payoffs to all players as the dominant strategy equilibrium of VCG.
    corecore