17,203 research outputs found

    Performance Analysis of DSDV, AODV AND AOMDV Routing Protocols Based on Fixed and Mobility Network Model in Wireless Sensor Network

    Get PDF
    Wireless sensor networks (WSN) is capable of autonomously forming a network without human interaction. Each node in a WSN acts as a router, forwarding data packets to other nodes. Without routing protocols, these routers cannot work together in phase. A central challenge in the design of WSN is the development of routing protocols that can efficiently find routes in a network. The question is which criteria should be considered when selecting a routing protocol, for instance, energy consumption (battery life), bandwidth, or security? We selected energy consumption as this is the most important criterion in WSN. To find out the best routing protocol, we analyzed three routing protocols namely AODV (Ad-hoc On Demand Distance Vector), AOMDV (Ad-hoc On Demand Multiple Distance Vector), and DSDV (Destination Sequence Distance Vector). Overall performance of these protocols was analyzed by comparing end-to-end delay, throughput, normalized routing load, and energy consumption of the network. This was accomplished by using the Network Simulator, NS-2.34 over IEEE 802.11. The analysis shows that AOMDV is the best routing protocol in terms of energy consumption

    A lightweight group-key management protocol for secure ad-hoc-network routing

    Get PDF
    AbstractSecure routing protocols for ad hoc networks use group keys for authenticating control messages without high energy consumption. A distributed and robust group-key management is, thus, essential. This paper proposes and specifies a protocol for distributing and managing group keys in ad hoc environments based on the Secure Optimized Link State Routing protocol (SOLSR). The proposed protocol manages group keys taking into consideration frequent network partitions/mergers and also reduces the impact of non-authorized users that try to illegitimately obtain the group key to use network resources. The analysis shows that our proposal provides high availability and presents low energy consumption for the two most important group events in ad hoc network: joining-node events and network-partition-merging events. Our protocol reduces both the number of control messages and the energy spent with cryptographic operations by up to three orders of magnitude when compared to contributory group-key agreement algorithms. The proposed protocol provides an efficient key management in a timely manner

    Energy and Load Aware Multipath Route Selection for Mobile Ad hoc Networks

    Get PDF
    Routing protocols are crucial in delivering packets from source to destination in scenarios where destinations are not directly within the sender’s range. Various routing protocols employ different strategies, but their presence is indispensable for seamless data transfer from source to destination. Multipath routing, while offering load balancing, often falls short in efficiently distributing the network’s load, thus adversely impacting the vital communication resource—energy—due to packet loss. This paper introduces an Energy-Efficient Load-Aware Routing (ELAM) scheme to enhance the routing performance of Mobile Ad hoc Networks (MANETs). Our motivation stems from the observation that many multipath routing protocols are designed based on a single criterion, such as the shortest path, often neglecting load balancing or energy conservation. While the Ad Hoc On-Demand Multipath Distance Vector (AOMDV) protocol demonstrates improved performance compared to unipath routing schemes, achieving both load balancing and energy efficiency remains challenging.  The proposed ELAM scheme considers energy conservation, the shortest path, and load balancing to enhance the performance of multipath routing protocols. ELAM considers the shortest path and energy conservation while accommodating more than two paths in a MANET. We introduce an energy factor that contributes to the network’s lifespan, with efficient load balancing enhancing the longevity of nodes and the overall network. The energy factor provides insights into the energy status, and we evaluate the performance of AODV, AOMDV, and the proposed ELAM. The results demonstrate that the proposed scheme outperforms existing protocols and effectively manages unnecessary energy consumption by mobile nodes. Our performance analysis reveals a minimum 5% improvement in throughput and Packet Delivery Ratio (PDR), indicating reduced packet dropping and network delays

    Minimize the Vampire Attack using WSN on Routing Protocol

    Get PDF
    In a wireless networks the future research direction in prevention of vampire attack by existing routing protocol. The objective of this project is to examine resource depletion attacks at the routing protocol layer, which attempts to permanently disable network nodes by quickly draining their battery power. In this project presents analysis of routing protocols namely AODV (Ad hoc on demand). These protocols are analyzed on five QOS (Quality of service) parameters: Throughput, Jitter, Delay, PDR (Packet delivery ratio) and Energy consumption. AODV is thus suitable for networks where nodes are having sufficient energy .The results are shown in this project after the analysis for five parameters using NS-2 software. To reduce vampire attacks clustering is used and the results are shown with the help of graphs. DOI: 10.17762/ijritcc2321-8169.15063

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this  an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio
    • …
    corecore