17 research outputs found

    Adaptive Strategies for Dynamic Pricing Agents

    Get PDF
    Dynamic Pricing (DyP) is a form of Revenue Management in which the price of a (usually) perishable good is changed over time to increase revenue. It is an effective method that has become even more relevant and useful with the emergence of Internet firms and the possibility of readily and frequently updating prices. In this paper a new approach to DyP is presented. We design adaptive dynamic pricing strategies and optimize their parameters with an Evolutionary Algorithm (EA) offline while the strategies can deal with stochastic market dynamics quickly online. We design two adaptive heuristic dynamic pricing strategies in a duopoly where each firm has a finite inventory of a single type of good. We consider two cases, one in which the average of a customer population’s stochastic valuation for each of the goods is constant throughout the selling horizon and one in which the average customer valuation for each good is changed according to a random Brownian motion. We also design an agent-based software framework for simulating various dynamic pricing strategies in agent-based marketplaces with multiple firms in a bounded time horizon. We use an EA to optimize the parameters for each of the pricing strategies in each of the settings and compare the strategies with other strategies from the literature. We also perform sensitivity a analysis and show that the optimized strategies work well even when used in settings with varied demand functions

    In Search of Optimal Linkage Trees

    Get PDF
    Linkage-learning Evolutionary Algorithms (EAs) use linkage learning to construct a linkage model, which is exploited to solve problems efficiently by taking into account important linkages, i.e. dependencies between problem variables, during variation. It has been shown that when this linkage model is aligned correctly with the structure of the problem, these EAs are capable of solving problems efficiently by performing variation based on this linkage model [2]. The Linkage Tree Genetic Algorithm (LTGA) uses a Linkage Tree (LT) as a linkage model to identify the problem's structure hierarchically, enabling it to solve various problems very efficiently. Understanding the reasons for LTGA's excellent performance is highly valuable as LTGA is also able to efficiently solve problems for which a tree-like linkage model seems inappropriate. This brings us to ask what in fact makes a linkage model ideal for LTGA to be used

    A novel population-based multi-objective CMA-ES and the impact of different constraint handling techniques

    Get PDF
    htmlabstractThe Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is a well-known, state-of-the-art optimization algorithm for single-objective real-valued problems, especially in black-box settings. Although several extensions of CMA-ES to multi-objective (MO) optimization exist, no extension incorporates a key component of the most robust and general CMA-ES variant: the association of a population with each Gaussian distribution that drives optimization. To achieve this, we use a recently introduced framework for extending population-based algorithms from single- to multi-objective optimization. We compare, using six well-known benchmark problems, the performance of the newly constructed MO-CMA-ES with existing variants and with the estimation of distribution algorithm (EDA) known as iMAMaLGaM, that is also an instance of the framework, extending the single-objective EDA iAMaLGaM to MO. Results underline the advantages of being able to use populations. Because many real-world problems have constraints, we also study the use of four constraint-handling techniques. We find that CMA-ES is typically less robust to these techniques than iAMaLGaM. Moreover, whereas we could verify that a penalty method that was previously used in literature leads to fast convergence, we also find that it has a high risk of finding only nearly, but not entirely, feasible solutions. We therefore propose that other constraint-handling techniques should be preferred in general

    Bi-objective optimization of organ properties for the simulation of intracavitary brachytherapy applicator placement in cervical cancer

    Full text link
    Validation of deformable image registration techniques is extremely important, but hard, especially when complex deformations or content mismatch are involved. These complex deformations and content mismatch, for example, occur after the placement of an applicator for brachytherapy for cervical cancer. Virtual phantoms could enable the creation of validation data sets with ground truth deformations that simulate the large deformations that occur between image acquisitions. However, the quality of the multi-organ Finite Element Method (FEM)-based simulations is dependent on the patient-specific external forces and mechanical properties assigned to the organs. A common approach to calibrate these simulation parameters is through optimization, finding the parameter settings that optimize the match between the outcome of the simulation and reality. When considering inherently simplified organ models, we hypothesize that the optimal deformations of one organ cannot be achieved with a single parameter setting without compromising the optimality of the deformation of the surrounding organs. This means that there will be a trade-off between the optimal deformations of adjacent organs, such as the vagina-uterus and bladder. This work therefore proposes and evaluates a multi-objective optimization approach where the trade-off between organ deformations can be assessed after optimization. We showcase what the extent of the trade-off looks like when bi-objectively optimizing the patient-specific mechanical properties and external forces of the vagina-uterus and bladder for FEM-based simulations

    Regularized model learning in EDAs for continuous and multi-objective optimization

    Get PDF
    Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods

    REMEDA: Random Embedding EDA for optimising functions with intrinsic dimension

    Get PDF

    Scalable multi-objective optimization

    Get PDF
    This thesis is concerned with the three open in multi-objective optimization: (i) the development of strategies for dealing with problems with many objective functions; (ii) the comprehension and solution of the model-building issues of current MOEDAs, and; (iii) the formulation of stopping criteria for multi-objective optimizers. We argue about what elements of MOEDAs should be modified in order to achieve a substantial improvement on their performance and scalability. However, in order to supply a solid ground for that discussion, some other elements are to be discussed as well. In particular, this thesis: sketches the supporting theoretical corpus and the fundamentals of MOEA and MOEDA algorithms; analyzes the scalability issue of MOEAs from both theoretical and experimental points of view; discusses the possible directions of improvement for MOEAs’ scalability, presenting the current trends of research; gives reasons of why EDAs can be used as a foundation for achieving a sizable improvement with regard to the scalability issue; examines the model-building issue in depth, hypothesizing on how it affects MOEDAs performance; proposes a novel model-building algorithm, the model-building growing neural gas (MBGNG), which fulfill the requirements for a new approach derived from the previous debate, and; introduces a novel MOEDA, the multi-objective neural EDA, that is constructed using MB-GNG as foundation. The formulation of an strategy for stopping multi-objective optimizers became obvious and necessary as this thesis was developed. The lack of an adequate stopping criterion made the rendered any experimentation that had to do with many objectives a rather cumbersome task. That is why it was compulsory to deal with this issue in order to proceed with further studies. In this regard, the thesis: provides an updated and exhaustive state-of-the-art of this matter; examines the properties and characteristics that a given stopping criterion should exhibit; puts forward a new stopping criterion, denominated MGBM, after the authors last names, that has a small computational footprint, and; experimentally validates MGBM in a set of experiments. Theoretical discussions and algorithm proposals are experimentally contrasted with current state-of-the-art approaches when required. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------Muchas actividades humanas están relacionadas con la elaboración de artefactos cuyas características, organización y/o costes de producción, etc., se deben ajustar en la manera más eficiente posible. Este hecho ha creado la necesidad de tener herramientas matemáticas y computacionales capaces de tratar estos problemas, lo cual ha impulsado el desarrollo de distintas áreas de investigación interrelacionadas, como, por ejemplo, la optimización, programación matemática, investigación de operaciones, etc. El concepto de optimización se puede formular en términos matemáticos como el proceso de buscar una o más soluciones factibles que se correspondan con los valores extremos de una o varias funciones. La mayor parte de los problemas de optimización reales implican la optimización de más de una función a la vez. Esta clase de problemas se conoce como problemas de optimización multi-objetivo (POM). Existe una clase de POM que es particularmente atractivo debido a su complejidad inherente: los denominados problemas de muchos objetivos. Estos son problemas con un número relativamente elevado de funciones objetivo. Numerosos experimentos han mostrado que los métodos “tradicionales” no logran un desempeño adecuado debido a la relación intensamente exponencial entre la dimensión del conjunto objetivo y la cantidad de recursos requeridos para resolver el problema correctamente. Estos problemas tienen una naturaleza poco intuitiva y, en particular, sus soluciones son difíciles de visualizar por un tomador de decisiones humano. Sin embargo, son bastante comunes en la práctica (Stewart et al., 2008). La optimización multi-objetivo ha recibido una importante atención por parte de la comunidad dedicada a los algoritmos evolutivos (Coello Coello et al., 2007). Sin embargo, se ha hecho patente la necesidad de buscar alternativas para poder tratar con los problemas de muchos objetivos. Los algoritmos de estimación de distribución (EDAs, por sus siglas en inglés) (Lozano et al., 2006) son buenos candidatos para esa tarea. Estos algoritmos se han presentado como una revolución en el campo de la computación evolutiva. Ellos sustituyen la aplicación de operadores inspirados en la selección natural por la síntesis de un modelo estadístico. Este modelo es muestreado para generar nuevos elementos y así proseguir con la búsqueda de soluciones. Sin embargo, los EDAs multi-objetivo (MOEDAs) no han logrado cumplir las expectativas creadas a priori. El leit motif de esta tesis se puede resumir en que la causa principal del bajo rendimiento MOEDAs se debe a los algoritmos de aprendizaje automático que se aplican en la construcción de modelos estadísticos. Los trabajos existentes hasta el momento han tomado una aproximación de “caja negra” al problema de la construcción de modelos. Por esa razón, se aplican métodos de aprendizaje automático ya existentes sin modificación alguna, sin percatarse que el problema de la construcción de modelos para EDAs tiene unos requisitos propios que en varios casos son contradictorios con el contexto original de aplicación de los mencionados algoritmos. En particular, hay propiedades compartidas por la mayoría de los enfoques de aprendizaje automático que podrían evitar la obtención de una mejora sustancial en el resultado de los MOEDAs. Ellas son: el tratamiento incorrecto de los valores atípicos (outliers) en el conjunto de datos; tendencia a la pérdida de la diversidad de la población, y; exceso de esfuerzo computacional dedicado a la búsqueda de un modelo óptimo. Estos problemas, aunque ya están presentes en los EDAs de un solo objetivo, se hacen patentes al escalar a problemas de varios objetivos y, en particular, a muchos objetivos. Además, con el aumento de la cantidad de objetivos con frecuencia esta situación se ve agravada por las consecuencias de la “maldición de la dimensionalidad”. La cuestión de los valores atípicos en los datos es un buen ejemplo de como la comunidad no ha notado esta diferencia. En el contexto tradicional del aprendizaje automático los valores extremos son considerados como datos ruidosos o irrelevantes y, por tanto, deben ser evitados. Sin embargo, los valores atípicos en los datos de la construcción de modelos representan las regiones recién descubiertas o soluciones candidatas del conjunto de decisión y por lo tanto deben ser explorados. En este caso, los casos aislados debe ser al menos igualmente representados por el modelo con respecto a los que están formando grupos. Sobre la base de estos razonamientos se estructuran los principales resultados obtenidos en el desarrollo de la tesis. A continuación se enumeran brevemente los mismos mencionando las referencias principales de los mismos. Comprensión del problema de la construcción de modelos en MOEDAs (Martí et al., 2010a, 2008b, 2009c). Se analiza que los EDAs han asumido incorrectamente que la construcción de modelos es un problema tradicional de aprendizaje automático. En el trabajo se muestra experimentalmente la hipótesis. Growing Neural Gas: una alternativa viable para construcción de modelos (Martí et al., 2008c). Se propone el Model-Building Growing Neural Gas network (MB-GNG), una modificación de las redes neuronales tipo Growing Neural Gas. MB-GNG tiene las propiedades requeridas para tratar correctamente la construcción de modelos. MONEDA: mejorando el desempeño de los MOEDAs (Martí et al., 2008a, 2009b, 2010c). El Multi-objective Optimization Neural EDA (MONEDA) fue ideado con el fin de hacer frente a los problemas arriba descritos de los MOEDAs y, por lo tanto, mejorar la escalabilidad de los MOEDAs. MONEDA utiliza MB-GNG para la construcción de modelos. Gracias a su algoritmo específico de construcción de modelos, la preservación de las élites de individuos de la población y su mecanismo de sustitución de individuos MONEDA es escalable capaz de resolver POMs continuos de muchos objetivos con un mejor desepeño que algoritmos similares a un coste computacional menor. Esta propuesta fue nominada a mejor trabajo en GECCO’2008. MONEDA en problemas de alta complejidad (Martí et al., 2009d). En este caso se lleva a cabo una amplia experimentación para comprender como las características de MONEDA provocan una mejora en el desempeño del algoritmo, y si sus resultados mejoran los obtenidos de otros enfoques. Se tratan problemas de alta complejidad. Estos experimentos demostraron que MONEDA produce resultados sustancialmente mejores que los algoritmos similares a una menor coste computacional. Nuevos paradigmas de aprendizaje: MARTEDA (Martí et al., 2010d). Si bien MB-GNG y MONEDA mostraron que la vía del tratamiento correcto de la construcción de modelos era una de las formas de obtener mejores resultados, ellos no evadían por completo el punto esencial: el paradigma de aprendizaje empleado. Al combinar un paradigma de aprendizaje automático alternativo, en particular, la Teoría de Resonancia Adaptativa, se trata a este asunto desde su raíz. En este respecto se han obtenido algunos resultados preliminares alentadores. Criterios de parada y convergencia (Martí et al., 2007, 2009a, 2010e). Con la realización de los experimentos anteriores nos percatamos de la falta de de un criterio de parada adecuado y que esta es un área inexplorada en el ámbito de la investigación en algoritmos evolutivos multi-objectivo. Abordamos esta cuestión proponiendo una serie de criterios de parada que se han demostrado efectivos en problemas sintéticos y del mundo real
    corecore