402 research outputs found

    Fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees

    Get PDF
    AbstractA bipartite graph is Hamiltonian laceable if there exists a Hamiltonian path joining every pair of vertices that are in different parts of the graph. It is well known that Cay(Sn,B) is Hamiltonian laceable, where Sn is the symmetric group on {1,2,…,n} and B is a generating set consisting of transpositions of Sn. In this paper, we show that for any F⊆E(Cay(Sn,B)), if |F|≤n−3 and n≥4, then there exists a Hamiltonian path in Cay(Sn,B)−F joining every pair of vertices that are in different parts of the graph. The result is optimal with respect to the number of edge faults

    Hypercube-Based Topologies With Incremental Link Redundancy.

    Get PDF
    Hypercube structures have received a great deal of attention due to the attractive properties inherent to their topology. Parallel algorithms targeted at this topology can be partitioned into many tasks, each of which running on one node processor. A high degree of performance is achievable by running every task individually and concurrently on each node processor available in the hypercube. Nevertheless, the performance can be greatly degraded if the node processors spend much time just communicating with one another. The goal in designing hypercubes is, therefore, to achieve a high ratio of computation time to communication time. The dissertation addresses primarily ways to enhance system performance by minimizing the communication time among processors. The need for improving the performance of hypercube networks is clearly explained. Three novel topologies related to hypercubes with improved performance are proposed and analyzed. Firstly, the Bridged Hypercube (BHC) is introduced. It is shown that this design is remarkably more efficient and cost-effective than the standard hypercube due to its low diameter. Basic routing algorithms such as one to one and broadcasting are developed for the BHC and proven optimal. Shortcomings of the BHC such as its asymmetry and limited application are clearly discussed. The Folded Hypercube (FHC), a symmetric network with low diameter and low degree of the node, is introduced. This new topology is shown to support highly efficient communications among the processors. For the FHC, optimal routing algorithms are developed and proven to be remarkably more efficient than those of the conventional hypercube. For both BHC and FHC, network parameters such as average distance, message traffic density, and communication delay are derived and comparatively analyzed. Lastly, to enhance the fault tolerance of the hypercube, a new design called Fault Tolerant Hypercube (FTH) is proposed. The FTH is shown to exhibit a graceful degradation in performance with the existence of faults. Probabilistic models based on Markov chain are employed to characterize the fault tolerance of the FTH. The results are verified by Monte Carlo simulation. The most attractive feature of all new topologies is the asymptotically zero overhead associated with them. The designs are simple and implementable. These designs can lead themselves to many parallel processing applications requiring high degree of performance

    Scene relighting and editing for improved object insertion

    Get PDF
    Abstract. The goal of this thesis is to develop a scene relighting and object insertion pipeline using Neural Radiance Fields (NeRF) to incorporate one or more objects into an outdoor environment scene. The output is a 3D mesh that embodies decomposed bidirectional reflectance distribution function (BRDF) characteristics, which interact with varying light source positions and strengths. To achieve this objective, the thesis is divided into two sub-tasks. The first sub-task involves extracting visual information about the outdoor environment from a sparse set of corresponding images. A neural representation is constructed, providing a comprehensive understanding of the constituent elements, such as materials, geometry, illumination, and shadows. The second sub-task involves generating a neural representation of the inserted object using either real-world images or synthetic data. To accomplish these objectives, the thesis draws on existing literature in computer vision and computer graphics. Different approaches are assessed to identify their advantages and disadvantages, with detailed descriptions of the chosen techniques provided, highlighting their functioning to produce the ultimate outcome. Overall, this thesis aims to provide a framework for compositing and relighting that is grounded in NeRF and allows for the seamless integration of objects into outdoor environments. The outcome of this work has potential applications in various domains, such as visual effects, gaming, and virtual reality
    • …
    corecore