409 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Efficient Processing of Geospatial mHealth Data Using a Scalable Crowdsensing Platform

    Get PDF
    Smart sensors and smartphones are becoming increasingly prevalent. Both can be used to gather environmental data (e.g., noise). Importantly, these devices can be connected to each other as well as to the Internet to collect large amounts of sensor data, which leads to many new opportunities. In particular, mobile crowdsensing techniques can be used to capture phenomena of common interest. Especially valuable insights can be gained if the collected data are additionally related to the time and place of the measurements. However, many technical solutions still use monolithic backends that are not capable of processing crowdsensing data in a flexible, efficient, and scalable manner. In this work, an architectural design was conceived with the goal to manage geospatial data in challenging crowdsensing healthcare scenarios. It will be shown how the proposed approach can be used to provide users with an interactive map of environmental noise, allowing tinnitus patients and other health-conscious people to avoid locations with harmful sound levels. Technically, the shown approach combines cloud-native applications with Big Data and stream processing concepts. In general, the presented architectural design shall serve as a foundation to implement practical and scalable crowdsensing platforms for various healthcare scenarios beyond the addressed use case

    Requirements for a Flexible and Generic API Enabling Mobile Crowdsensing mHealth Applications

    Get PDF
    Presently, mHealth becomes increasingly important in supporting patients in their everyday life. For example, diabetes patients can monitor themselves by the use of their smartphones. On the other, clinicians as well as medical researchers try to exploit the advantages of mobile technology. More specifically, mHealth applications can gather data in everyday life and are able to easily collect sensor or context data (e.g., the current temperature). Compared to clinical trials, these advantages enable mHealth applications to gather more data in a rather short time. Besides, humans often behave atypically in a clinical environment and, hence, mHealth applications collect data in a setting that reflects the daily behavior more naturally. Hitherto, many technical solutions emerged to deal with such data collection settings. Mobile crowdsensing is one prominent example in this context. We utilize the latter technology in a multitude of large-scale projects to gather data of several chronic disorders. In the TrackYourTinnitus project, for example, we pursue the goal to reveal new medical insights to the tinnitus disorder. We learned in the realized projects that a sophisticated API must be provided to cope with the requirements of researchers from the medical domain. Notably, the API must be able to flexibly deal with requirement changes. The work at hand presents the elicited requirements and illustrate the pillars on which our flexible and generic API is built on. Although we identified that the maintenance of such an API is a challenging endeavor, new data evaluation opportunities arise that are promising in the context of chronic disorder management

    Mobile crowd sensing architectural frameworks: A comprehensive survey

    Get PDF
    Mobile Crowd Sensing has emerged as a new sensing paradigm, efficiently exploiting human intelligence and mobility in conjunction with advanced capabilities and proliferation of mobile devices. In order for MCS applications to reach their full potentials, a number of research challenges should be sufficiently addressed. The aim of this paper is to survey representative mobile crowd sensing applications and frameworks proposed in related research literature, analyze their distinct features and discuss on their relative merits and weaknesses, highlighting also potential solutions, in order to take a step closer to the definition of a unified MCS architectural framework

    Resource Management Techniques in Cloud-Fog for IoT and Mobile Crowdsensing Environments

    Get PDF
    The unpredictable and huge data generation nowadays by smart devices from IoT and mobile Crowd Sensing applications like (Sensors, smartphones, Wi-Fi routers) need processing power and storage. Cloud provides these capabilities to serve organizations and customers, but when using cloud appear some limitations, the most important of these limitations are Resource Allocation and Task Scheduling. The resource allocation process is a mechanism that ensures allocation virtual machine when there are multiple applications that require various resources such as CPU and I/O memory. Whereas scheduling is the process of determining the sequence in which these tasks come and depart the resources in order to maximize efficiency. In this paper we tried to highlight the most relevant difficulties that cloud computing is now facing. We presented a comprehensive review of resource allocation and scheduling techniques to overcome these limitations. Finally, the previous techniques and strategies for allocation and scheduling have been compared in a table with their drawbacks

    Delivering IoT Services in Smart Cities and Environmental Monitoring through Collective Awareness, Mobile Crowdsensing and Open Data

    Get PDF
    The Internet of Things (IoT) is the paradigm that allows us to interact with the real world by means of networking-enabled devices and convert physical phenomena into valuable digital knowledge. Such a rapidly evolving field leveraged the explosion of a number of technologies, standards and platforms. Consequently, different IoT ecosystems behave as closed islands and do not interoperate with each other, thus the potential of the number of connected objects in the world is far from being totally unleashed. Typically, research efforts in tackling such challenge tend to propose a new IoT platforms or standards, however, such solutions find obstacles in keeping up the pace at which the field is evolving. Our work is different, in that it originates from the following observation: in use cases that depend on common phenomena such as Smart Cities or environmental monitoring a lot of useful data for applications is already in place somewhere or devices capable of collecting such data are already deployed. For such scenarios, we propose and study the use of Collective Awareness Paradigms (CAP), which offload data collection to a crowd of participants. We bring three main contributions: we study the feasibility of using Open Data coming from heterogeneous sources, focusing particularly on crowdsourced and user-contributed data that has the drawback of being incomplete and we then propose a State-of-the-Art algorith that automatically classifies raw crowdsourced sensor data; we design a data collection framework that uses Mobile Crowdsensing (MCS) and puts the participants and the stakeholders in a coordinated interaction together with a distributed data collection algorithm that prevents the users from collecting too much or too less data; (3) we design a Service Oriented Architecture that constitutes a unique interface to the raw data collected through CAPs through their aggregation into ad-hoc services, moreover, we provide a prototype implementation

    Technical Challenges of a Mobile Application Supporting Intersession Processes in Psychotherapy

    Get PDF
    The usage of mobile applications in healthcare is gaining popularity in recent years. The ubiquity of a sophisticated mobile appliance that is applicable to sample ecological patient data in real life by acquiring both mental state and environmental data has enabled new possibilities for researchers and healthcare providers. Collecting data using the mentioned approach is often called Ecological Momentary Assessment (EMA) and is characterized by an unidirectional data flow towards the platform provider. A more challenging approach, in turn, is called Ecological Momentary Intervention (EMI). The latter requires a bidirectional data flow in order to enable the possibility of sending feedback to the patients and controlling their experiences through interventions. Although both approaches are established parts of IT-supported treatments in the field of psychology and psychotherapy until now, the so-called intersession process has not been technically supported appropriately yet. Therefore, the Intersession-Online platform was developed in order to (a) assess intersession processes systematically, (b) monitor a patient, and (c) intervene by suppressing negative thoughts concerning the therapy. In this paper, the technical requirements, architecture, and features of the mobile application of the Intersession-Online platform are presented. In this context, the development of a patient data sampling mechanism, which consists of a sophisticated, inter-questionnaire dependent sampling schedule and synchronization strategy is particularly illustrated and discussed. Altogether, the technical challenges will show that a mobile application supporting intersession processes in psychotherapy is an endeavor which requires many considerations. However, on the other, such a mobile application may be the basis for new technical as well as psychological insights

    A survey of urban drive-by sensing: An optimization perspective

    Full text link
    Pervasive and mobile sensing is an integral part of smart transport and smart city applications. Vehicle-based mobile sensing, or drive-by sensing (DS), is gaining popularity in both academic research and field practice. The DS paradigm has an inherent transport component, as the spatial-temporal distribution of the sensors are closely related to the mobility patterns of their hosts, which may include third-party (e.g. taxis, buses) or for-hire (e.g. unmanned aerial vehicles and dedicated vehicles) vehicles. It is therefore essential to understand, assess and optimize the sensing power of vehicle fleets under a wide range of urban sensing scenarios. To this end, this paper offers an optimization-oriented summary of recent literature by presenting a four-step discussion, namely (1) quantifying the sensing quality (objective); (2) assessing the sensing power of various fleets (strategic); (3) sensor deployment (strategic/tactical); and (4) vehicle maneuvers (tactical/operational). By compiling research findings and practical insights in this way, this review article not only highlights the optimization aspect of drive-by sensing, but also serves as a practical guide for configuring and deploying vehicle-based urban sensing systems.Comment: 24 pages, 3 figures, 4 table
    corecore