3,207 research outputs found

    On edge intersection graphs of paths with 2 bends

    Get PDF
    An EPG-representation of a graph G is a collection of paths in a grid, each corresponding to a single vertex of G, so that two vertices are adjacent if and only if their corresponding paths share infinitely many points. In this paper we focus on graphs admitting EPG-representations by paths with at most 2 bends. We show hardness of the recognition problem for this class of graphs, along with some subclasses. We also initiate the study of graphs representable by unaligned polylines, and by polylines, whose every segment is parallel to one of prescribed slopes. We show hardness of recognition and explore the trade-off between the number of bends and the number of slopes. © Springer-Verlag GmbH Germany 2016

    Monotonic Representations of Outerplanar Graphs as Edge Intersection Graphs of Paths on a Grid

    Full text link
    A graph GG is called an edge intersection graph of paths on a grid if there is a grid and there is a set of paths on this grid, such that the vertices of GG correspond to the paths and two vertices of GG are adjacent if and only if the corresponding paths share a grid edge. Such a representation is called an EPG representation of GG. BkB_{k} is the class of graphs for which there exists an EPG representation where every path has at most kk bends. The bend number b(G)b(G) of a graph GG is the smallest natural number kk for which GG belongs to BkB_k. BkmB_{k}^{m} is the subclass of BkB_k containing all graphs for which there exists an EPG representation where every path has at most kk bends and is monotonic, i.e. it is ascending in both columns and rows. The monotonic bend number bm(G)b^m(G) of a graph GG is the smallest natural number kk for which GG belongs to BkmB_k^m. Edge intersection graphs of paths on a grid were introduced by Golumbic, Lipshteyn and Stern in 2009 and a lot of research has been done on them since then. In this paper we deal with the monotonic bend number of outerplanar graphs. We show that bm(G)⩽2b^m(G)\leqslant 2 holds for every outerplanar graph GG. Moreover, we characterize in terms of forbidden subgraphs the maximal outerplanar graphs and the cacti with (monotonic) bend number equal to 00, 11 and 22. As a consequence we show that for any maximal outerplanar graph and any cactus a (monotonic) EPG representation with the smallest possible number of bends can be constructed in a time which is polynomial in the number of vertices of the graph

    On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid

    Full text link
    Golumbic, Lipshteyn and Stern \cite{Golumbic-epg} proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer kk, BkB_k-EPG graphs are defined as EPG graphs admitting a model in which each path has at most kk bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4B_4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that every circular-arc graph is B3B_3-EPG, and that there exist circular-arc graphs which are not B2B_2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in a rectangle of the grid), we obtain EPR (edge intersection of path in a rectangle) representations. We may define BkB_k-EPR graphs, k≥0k\geq 0, the same way as BkB_k-EPG graphs. Circular-arc graphs are clearly B4B_4-EPR graphs and we will show that there exist circular-arc graphs that are not B3B_3-EPR graphs. We also show that normal circular-arc graphs are B2B_2-EPR graphs and that there exist normal circular-arc graphs that are not B1B_1-EPR graphs. Finally, we characterize B1B_1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs

    Computing maximum cliques in B2B_2-EPG graphs

    Full text link
    EPG graphs, introduced by Golumbic et al. in 2009, are edge-intersection graphs of paths on an orthogonal grid. The class BkB_k-EPG is the subclass of EPG graphs where the path on the grid associated to each vertex has at most kk bends. Epstein et al. showed in 2013 that computing a maximum clique in B1B_1-EPG graphs is polynomial. As remarked in [Heldt et al., 2014], when the number of bends is at least 44, the class contains 22-interval graphs for which computing a maximum clique is an NP-hard problem. The complexity status of the Maximum Clique problem remains open for B2B_2 and B3B_3-EPG graphs. In this paper, we show that we can compute a maximum clique in polynomial time in B2B_2-EPG graphs given a representation of the graph. Moreover, we show that a simple counting argument provides a 2(k+1){2(k+1)}-approximation for the coloring problem on BkB_k-EPG graphs without knowing the representation of the graph. It generalizes a result of [Epstein et al, 2013] on B1B_1-EPG graphs (where the representation was needed)

    1-String CZ-Representation of Planar Graphs

    Full text link
    In this paper, we prove that every planar 4-connected graph has a CZ-representation---a string representation using paths in a rectangular grid that contain at most one vertical segment. Furthermore, two paths representing vertices u,vu,v intersect precisely once whenever there is an edge between uu and vv. The required size of the grid is n×2nn \times 2n

    Proper circular arc graphs as intersection graphs of paths on a grid

    Full text link
    In this paper we present a characterisation, by an infinite family of minimal forbidden induced subgraphs, of proper circular arc graphs which are intersection graphs of paths on a grid, where each path has at most one bend (turn)
    • …
    corecore