206 research outputs found

    Reaction Null Space of a multibody system with applications in robotics

    Get PDF
    This paper provides an overview of implementation examples based on the Reaction Null Space formalism, developed initially to tackle the problem of satellite-base disturbance of a free-floating space robot, when the robot arm is activated. The method has been applied throughout the years to other unfixed-base systems, e.g. flexible-base and macro/mini robot systems, as well as to the balance control problem of humanoid robots. The paper also includes most recent results about complete dynamical decoupling of the end-link of a fixed-base robot, wherein the end-link is regarded as the unfixed-base. This interpretation is shown to be useful with regard to motion/force control scenarios. Respective implementation results are provided

    Research and development at ORNL/CESAR towards cooperating robotic systems for hazardous environments

    Get PDF
    One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace

    A Null-space based Approach for a Safe and Effective Human-Robot Collaboration

    Full text link
    During physical human robot collaboration, it is important to be able to implement a time-varying interactive behaviour while ensuring robust stability. Admittance control and passivity theory can be exploited for achieving these objectives. Nevertheless, when the admittance dynamics is time-varying, it can happen that, for ensuring a passive and stable behaviour, some spurious dissipative effects have to be introduced in the admittance dynamics. These effects are perceived by the user and degrade the collaborative performance. In this paper we exploit the task redundancy of the manipulator in order to harvest energy in the null space and to avoid spurious dynamics on the admittance. The proposed architecture is validated by simulations and by experiments onto a collaborative robot

    Multi-DoF Time Domain Passivity Approach Based Drift Compensation for Telemanipulation

    Get PDF
    When, in addition to stability, position synchronization is also desired in bilateral teleoperation, Time Domain Passivity Approach (TDPA) alone might not be able to fulfill the desired objective. This is due to an undesired effect caused by admittance type passivity controllers, namely position drift. Previous works focused on developing TDPA-based drift compensation methods to solve this issue. It was shown that, in addition to reducing drift, one of the proposed methods was able to keep the force signals within their normal range, guaranteeing the safety of the task. However, no multi-DoF treatment of those approaches has been addressed. In that scope, this paper focuses on providing an extension of previous TDPA-based approaches to multi-DoF Cartesian-space teleoperation. An analysis of the convergence properties of the presented method is also provided. In addition, its applicability to multi-DoF devices is shown through hardware experiments and numerical simulation with round-trip time delays up to 700 ms.Comment: 2019 19th International Conference on Advanced Robotics (ICAR

    Whole-Body Bilateral Teleoperation of a Redundant Aerial Manipulator

    Get PDF
    Attaching a robotic manipulator to a flying base allows for significant improvements in the reachability and versatility of manipulation tasks. In order to explore such systems while taking advantage of human capabilities in terms of perception and cognition, bilateral teleoperation arises as a reasonable solution. However, since most telemanipulation tasks require visual feedback in addition to the haptic one, real-time (task-dependent) positioning of a video camera, which is usually attached to the flying base, becomes an additional objective to be fulfilled. Since the flying base is part of the kinematic structure of the robot, if proper care is not taken, moving the video camera could undesirably disturb the end-effector motion. For that reason, the necessity of controlling the base position in the null space of the manipulation task arises. In order to provide the operator with meaningful information about the limits of the allowed motions in the null space, this paper presents a novel haptic concept called Null-Space Wall. In addition, a framework to allow stable bilateral teleoperation of both tasks is presented. Numerical simulation data confirm that the proposed framework is able to keep the system passive while allowing the operator to perform time-delayed telemanipulation and command the base to a task-dependent optimal pose.Comment: to be published in 2020 IEEE International Conference on Robotics and Automation (ICRA

    Cooperative Kinematic Control for Multiple Redundant Manipulators Under Partially Known Information Using Recurrent Neural Network

    Get PDF
    In this study, we investigate the problem of cooperative kinematic control for multiple redundant manipulators under partially known information using recurrent neural network (RNN). The communication among manipulators is modeled as a graph topology network with the information exchange that only occurs at the neighbouring robot nodes. Under partially known information, four objectives are simultaneously achieved, i.e, global cooperation and synchronization among manipulators, joint physical limits compliance, neighbor-to-neighbor communication among robots, and optimality of cost function. We develop a velocity observer for each individual manipulator to help them to obtain the desired motion velocity information. Moreover, a negative feedback term is introduced with a higher tracking precision. Minimizing the joint velocity norm as cost function, the considered cooperative kinematic control is built as a quadratic programming (QP) optimization problem integrating with both joint angle and joint speed limitations, and is solved online by constructing a dynamic RNN. Moreover, global convergence of the developed velocity observer, RNN controller and cooperative tracking error are theoretically derived. Finally, under a fixed and variable communication topology, respectively, application in using a group of iiwa R800 redundant manipulators to transport a payload and comparison with the existing method are conducted. Among the simulative results, the robot group synchronously achieves the desired circle and rhodonea trajectory tracking, with higher tracking precision reaching to zero. When joint angles and joint velocities tend to exceed the setting constraints, respectively, they are constrained into the upper and lower bounds owing to the designed RNN controller

    Probabilistic prioritization of movement primitives

    Get PDF
    Movement prioritization is a common approach to combine controllers of different tasks for redundant robots, where each task is assigned a priority. The priorities of the tasks are often hand-tuned or the result of an optimization, but seldomly learned from data. This paper combines Bayesian task prioritization with probabilistic movement primitives to prioritize full motion sequences that are learned from demonstrations. Probabilistic movement primitives (ProMPs) can encode distributions of movements over full motion sequences and provide control laws to exactly follow these distributions. The probabilistic formulation allows for a natural application of Bayesian task prioritization. We extend the ProMP controllers with an additional feedback component that accounts inaccuracies in following the distribution and allows for a more robust prioritization of primitives. We demonstrate how the task priorities can be obtained from imitation learning and how different primitives can be combined to solve even unseen task-combinations. Due to the prioritization, our approach can efficiently learn a combination of tasks without requiring individual models per task combination. Further, our approach can adapt an existing primitive library by prioritizing additional controllers, for example, for implementing obstacle avoidance. Hence, the need of retraining the whole library is avoided in many cases. We evaluate our approach on reaching movements under constraints with redundant simulated planar robots and two physical robot platforms, the humanoid robot “iCub” and a KUKA LWR robot arm
    corecore