2,565 research outputs found

    Amplitude Death: The emergence of stationarity in coupled nonlinear systems

    Full text link
    When nonlinear dynamical systems are coupled, depending on the intrinsic dynamics and the manner in which the coupling is organized, a host of novel phenomena can arise. In this context, an important emergent phenomenon is the complete suppression of oscillations, formally termed amplitude death (AD). Oscillations of the entire system cease as a consequence of the interaction, leading to stationary behavior. The fixed points that the coupling stabilizes can be the otherwise unstable fixed points of the uncoupled system or can correspond to novel stationary points. Such behaviour is of relevance in areas ranging from laser physics to the dynamics of biological systems. In this review we discuss the characteristics of the different coupling strategies and scenarios that lead to AD in a variety of different situations, and draw attention to several open issues and challenging problems for further study.Comment: Physics Reports (2012

    Reachability in Biochemical Dynamical Systems by Quantitative Discrete Approximation (extended abstract)

    Full text link
    In this paper, a novel computational technique for finite discrete approximation of continuous dynamical systems suitable for a significant class of biochemical dynamical systems is introduced. The method is parameterized in order to affect the imposed level of approximation provided that with increasing parameter value the approximation converges to the original continuous system. By employing this approximation technique, we present algorithms solving the reachability problem for biochemical dynamical systems. The presented method and algorithms are evaluated on several exemplary biological models and on a real case study.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Travelling waves in the cool flame regime

    Full text link
    Hydrocarbon oxidation develops through a complex network of elementary steps. Depending on the initial thermodynamic conditions, different behaviours are observed ranging from slow combustion to hot ignition [1]. Chain reactions involving radicals, govern all the combustion processes. Most of the time, the operating kinetic mechanism can be approximated by a reduced kinetic scheme which is depending on the initial conditions. In an intermediate range of temperature, cool flames appear as a transition between slow combustion and hot ignition. The existence of cool flames is often associated with knocking is engines

    Turing instabilities in general systems

    Get PDF
    We present necessary and sufficient conditions on the stability matrix of a general n(S2)-dimensional reaction-diffusion system which guarantee that its uniform steady state can undergo a Turing bifurcation. The necessary (kinetic) condition, requiring that the system be composed of an unstable (or activator) and a stable (or inhibitor) subsystem, and the sufficient condition of sufficiently rapid inhibitor diffusion relative to the activator subsystem are established in three theorems which form the core of our results. Given the possibility that the unstable (activator) subsystem involves several species (dimensions), we present a classification of the analytically deduced Turing bifurcations into p (1 h p h (n m 1)) different classes. For n = 3 dimensions we illustrate numerically that two types of steady Turing pattern arise in one spatial dimension in a generic reaction-diffusion system. The results confirm the validity of an earlier conjecture [12] and they also characterise the class of so-called strongly stable matrices for which only necessary conditions have been known before [23, 24]. One of the main consequences of the present work is that biological morphogens, which have so far been expected to be single chemical species [1-9], may instead be composed of two or more interacting species forming an unstable subsystem

    Diffusion-driven instabilities and emerging spatial patterns in patchy landscapes

    Get PDF
    Spatial variation in population densities across a landscape is a feature of many ecological systems, from self-organised patterns on mussel beds to spatially restricted insect outbreaks. It occurs as a result of environmental variation in abiotic factors and/or biotic factors structuring the spatial distribution of populations. However the ways in which abiotic and biotic factors interact to determine the existence and nature of spatial patterns in population density remain poorly understood. Here we present a new approach to studying this question by analysing a predator–prey patch-model in a heterogenous landscape. We use analytical and numerical methods originally developed for studying nearest- neighbour (juxtacrine) signalling in epithelia to explore whether and under which conditions patterns emerge. We find that abiotic and biotic factors interact to promote pattern formation. In fact, we find a rich and highly complex array of coexisting stable patterns, located within an enormous number of unstable patterns. Our simulation results indicate that many of the stable patterns have appreciable basins of attraction, making them significant in applications. We are able to identify mechanisms for these patterns based on the classical ideas of long-range inhibition and short-range activation, whereby landscape heterogeneity can modulate the spatial scales at which these processes operate to structure the populations
    • …
    corecore