105,564 research outputs found

    Covering Small Independent Sets and Separators with Applications to Parameterized Algorithms

    Full text link
    We present two new combinatorial tools for the design of parameterized algorithms. The first is a simple linear time randomized algorithm that given as input a dd-degenerate graph GG and an integer kk, outputs an independent set YY, such that for every independent set XX in GG of size at most kk, the probability that XX is a subset of YY is at least (((d+1)kk)⋅k(d+1))−1\left({(d+1)k \choose k} \cdot k(d+1)\right)^{-1}.The second is a new (deterministic) polynomial time graph sparsification procedure that given a graph GG, a set T={{s1,t1},{s2,t2},…,{sℓ,tℓ}}T = \{\{s_1, t_1\}, \{s_2, t_2\}, \ldots, \{s_\ell, t_\ell\}\} of terminal pairs and an integer kk, returns an induced subgraph G⋆G^\star of GG that maintains all the inclusion minimal multicuts of GG of size at most kk, and does not contain any (k+2)(k+2)-vertex connected set of size 2O(k)2^{{\cal O}(k)}. In particular, G⋆G^\star excludes a clique of size 2O(k)2^{{\cal O}(k)} as a topological minor. Put together, our new tools yield new randomized fixed parameter tractable (FPT) algorithms for Stable ss-tt Separator, Stable Odd Cycle Transversal and Stable Multicut on general graphs, and for Stable Directed Feedback Vertex Set on dd-degenerate graphs, resolving two problems left open by Marx et al. [ACM Transactions on Algorithms, 2013]. All of our algorithms can be derandomized at the cost of a small overhead in the running time.Comment: 35 page

    An algebraic formulation of the graph reconstruction conjecture

    Get PDF
    The graph reconstruction conjecture asserts that every finite simple graph on at least three vertices can be reconstructed up to isomorphism from its deck - the collection of its vertex-deleted subgraphs. Kocay's Lemma is an important tool in graph reconstruction. Roughly speaking, given the deck of a graph GG and any finite sequence of graphs, it gives a linear constraint that every reconstruction of GG must satisfy. Let ψ(n)\psi(n) be the number of distinct (mutually non-isomorphic) graphs on nn vertices, and let d(n)d(n) be the number of distinct decks that can be constructed from these graphs. Then the difference ψ(n)−d(n)\psi(n) - d(n) measures how many graphs cannot be reconstructed from their decks. In particular, the graph reconstruction conjecture is true for nn-vertex graphs if and only if ψ(n)=d(n)\psi(n) = d(n). We give a framework based on Kocay's lemma to study this discrepancy. We prove that if MM is a matrix of covering numbers of graphs by sequences of graphs, then d(n)≥rankR(M)d(n) \geq \mathsf{rank}_\mathbb{R}(M). In particular, all nn-vertex graphs are reconstructible if one such matrix has rank ψ(n)\psi(n). To complement this result, we prove that it is possible to choose a family of sequences of graphs such that the corresponding matrix MM of covering numbers satisfies d(n)=rankR(M)d(n) = \mathsf{rank}_\mathbb{R}(M).Comment: 12 pages, 2 figure

    Disproving the normal graph conjecture

    Full text link
    A graph GG is called normal if there exist two coverings, C\mathbb{C} and S\mathbb{S} of its vertex set such that every member of C\mathbb{C} induces a clique in GG, every member of S\mathbb{S} induces an independent set in GG and C∩S≠∅C \cap S \neq \emptyset for every C∈CC \in \mathbb{C} and S∈SS \in \mathbb{S}. It has been conjectured by De Simone and K\"orner in 1999 that a graph GG is normal if GG does not contain C5C_5, C7C_7 and C7‾\overline{C_7} as an induced subgraph. We disprove this conjecture

    Symmetry adapted Assur decompositions

    Get PDF
    Assur graphs are a tool originally developed by mechanical engineers to decompose mechanisms for simpler analysis and synthesis. Recent work has connected these graphs to strongly directed graphs, and decompositions of the pinned rigidity matrix. Many mechanisms have initial configurations which are symmetric, and other recent work has exploited the orbit matrix as a symmetry adapted form of the rigidity matrix. This paper explores how the decomposition and analysis of symmetric frameworks and their symmetric motions can be supported by the new symmetry adapted tools.Comment: 40 pages, 22 figure

    The Relativized Second Eigenvalue Conjecture of Alon

    Full text link
    We prove a relativization of the Alon Second Eigenvalue Conjecture for all dd-regular base graphs, BB, with d≥3d\ge 3: for any ϵ>0\epsilon>0, we show that a random covering map of degree nn to BB has a new eigenvalue greater than 2d−1+ϵ2\sqrt{d-1}+\epsilon in absolute value with probability O(1/n)O(1/n). Furthermore, if BB is a Ramanujan graph, we show that this probability is proportional to n−η fund(B)n^{-{\eta_{\rm \,fund}}(B)}, where η fund(B){\eta_{\rm \,fund}}(B) is an integer depending on BB, which can be computed by a finite algorithm for any fixed BB. For any dd-regular graph, BB, η fund(B){\eta_{\rm \,fund}}(B) is greater than d−1\sqrt{d-1}. Our proof introduces a number of ideas that simplify and strengthen the methods of Friedman's proof of the original conjecture of Alon. The most significant new idea is that of a ``certified trace,'' which is not only greatly simplifies our trace methods, but is the reason we can obtain the n−η fund(B)n^{-{\eta_{\rm \,fund}}(B)} estimate above. This estimate represents an improvement over Friedman's results of the original Alon conjecture for random dd-regular graphs, for certain values of dd

    Covering Pairs in Directed Acyclic Graphs

    Full text link
    The Minimum Path Cover problem on directed acyclic graphs (DAGs) is a classical problem that provides a clear and simple mathematical formulation for several applications in different areas and that has an efficient algorithmic solution. In this paper, we study the computational complexity of two constrained variants of Minimum Path Cover motivated by the recent introduction of next-generation sequencing technologies in bioinformatics. The first problem (MinPCRP), given a DAG and a set of pairs of vertices, asks for a minimum cardinality set of paths "covering" all the vertices such that both vertices of each pair belong to the same path. For this problem, we show that, while it is NP-hard to compute if there exists a solution consisting of at most three paths, it is possible to decide in polynomial time whether a solution consisting of at most two paths exists. The second problem (MaxRPSP), given a DAG and a set of pairs of vertices, asks for a path containing the maximum number of the given pairs of vertices. We show its NP-hardness and also its W[1]-hardness when parametrized by the number of covered pairs. On the positive side, we give a fixed-parameter algorithm when the parameter is the maximum overlapping degree, a natural parameter in the bioinformatics applications of the problem
    • …
    corecore