3,199 research outputs found

    A simplified model of the Martian atmosphere - Part 2: a POD-Galerkin analysis

    Get PDF
    In Part I of this study Whitehouse et al. (2005) performed a diagnostic analysis of a simplied model of the Martian atmosphere, in which topography was absent and in which heating was modelled as Newtonian relaxation towards a zonally symmetric equilibrium temperature field. There we derived a reduced-order approximation to the vertical and the horizonal structure of the baroclinically unstable Martian atmosphere, retaining only the barotropic mode and the leading order baroclinic modes. Our objectives in Part II of the study are to incorporate these approximations into a Proper Orthogonal Decomposition-Galerkin expansion of the spherical quasi-geostrophic model in order to derive hierarchies of nonlinear ordinary differential equations for the time-varying coefficients of the spatial structures. Two different vertical truncations are considered, as well as three different norms and 3 different Galerkin truncations. We investigate each in turn, using tools from bifurcation theory, to determine which of the systems most closely resembles the data for which the original diagnostics were performed

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Application of general semi-infinite Programming to Lapidary Cutting Problems

    Get PDF
    We consider a volume maximization problem arising in gemstone cutting industry. The problem is formulated as a general semi-infinite program (GSIP) and solved using an interiorpoint method developed by Stein. It is shown, that the convexity assumption needed for the convergence of the algorithm can be satisfied by appropriate modelling. Clustering techniques are used to reduce the number of container constraints, which is necessary to make the subproblems practically tractable. An iterative process consisting of GSIP optimization and adaptive refinement steps is then employed to obtain an optimal solution which is also feasible for the original problem. Some numerical results based on realworld data are also presented

    Simulation-based coyote optimization algorithm to determine gains of PI controller for enhancing the performance of solar PV water-pumping system

    Get PDF
    In this study, a simulation-based coyote optimization algorithm (COA) to identify the gains of PI to ameliorate the water-pumping system performance fed from the photovoltaic system is presented. The aim is to develop a stand-alone water-pumping system powered by solar energy, i.e., without the need of electric power from the utility grid. The voltage of the DC bus was adopted as a good candidate to guarantee the extraction of the maximum power under partial shading conditions. In such a system, two proportional-integral (PI) controllers, at least, are necessary. The adjustment of (Proportional-Integral) controllers are always carried out by classical and tiresome trials and errors techniques which becomes a hard task and time-consuming. In order to overcome this problem, an optimization problem was reformulated and modeled under functional time-domain constraints, aiming at tuning these decision variables. For achieving the desired operational characteristics of the PV water-pumping system for both rotor speed and DC-link voltage, simultaneously, the proposed COA algorithm is adopted. It is carried out through resolving a multiobjective optimization problem employing the weighted-sum technique. Inspired on theCanis latransspecies, the COA algorithm is successfully investigated to resolve such a problem by taking into account some constraints in terms of time-domain performance as well as producing the maximum power from the photovoltaic generation system. To assess the efficiency of the suggested COA method, the classical Ziegler-Nichols and trial-error tuning methods for the DC-link voltage and rotor speed dynamics, were compared. The main outcomes ensured the effectiveness and superiority of the COA algorithm. Compared to the other reported techniques, it is superior in terms of convergence rapidity and solution qualities

    An Interactive Environment for Supporting the Transition from Simulation to Optimization

    Get PDF

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic
    corecore