2,256 research outputs found

    On different Versions of the Exact Subgraph Hierarchy for the Stable Set Problem

    Full text link
    Let GG be a graph with nn vertices and mm edges. One of several hierarchies towards the stability number of GG is the exact subgraph hierarchy (ESH). On the first level it computes the Lov\'{a}sz theta function Ï‘(G)\vartheta(G) as semidefinite program (SDP) with a matrix variable of order n+1n+1 and n+m+1n+m+1 constraints. On the kk-th level it adds all exact subgraph constraints (ESC) for subgraphs of order kk to the SDP. An ESC ensures that the submatrix of the matrix variable corresponding to the subgraph is in the correct polytope. By including only some ESCs into the SDP the ESH can be exploited computationally. In this paper we introduce a variant of the ESH that computes Ï‘(G)\vartheta(G) through an SDP with a matrix variable of order nn and m+1m+1 constraints. We show that it makes sense to include the ESCs into this SDP and introduce the compressed ESH (CESH) analogously to the ESH. Computationally the CESH seems favorable as the SDP is smaller. However, we prove that the bounds based on the ESH are always at least as good as those of the CESH. In computations sometimes they are significantly better. We also introduce scaled ESCs (SESCs), which are a more natural way to include exactness constraints into the smaller SDP and we prove that including an SESC is equivalent to including an ESC for every subgraph

    Efficient Computation of Multiple Density-Based Clustering Hierarchies

    Full text link
    HDBSCAN*, a state-of-the-art density-based hierarchical clustering method, produces a hierarchical organization of clusters in a dataset w.r.t. a parameter mpts. While the performance of HDBSCAN* is robust w.r.t. mpts in the sense that a small change in mpts typically leads to only a small or no change in the clustering structure, choosing a "good" mpts value can be challenging: depending on the data distribution, a high or low value for mpts may be more appropriate, and certain data clusters may reveal themselves at different values of mpts. To explore results for a range of mpts values, however, one has to run HDBSCAN* for each value in the range independently, which is computationally inefficient. In this paper, we propose an efficient approach to compute all HDBSCAN* hierarchies for a range of mpts values by replacing the graph used by HDBSCAN* with a much smaller graph that is guaranteed to contain the required information. An extensive experimental evaluation shows that with our approach one can obtain over one hundred hierarchies for the computational cost equivalent to running HDBSCAN* about 2 times.Comment: A short version of this paper appears at IEEE ICDM 2017. Corrected typos. Revised abstrac

    Improving Expressivity of Graph Neural Networks using Localization

    Full text link
    In this paper, we propose localized versions of Weisfeiler-Leman (WL) algorithms in an effort to both increase the expressivity, as well as decrease the computational overhead. We focus on the specific problem of subgraph counting and give localized versions of k−k-WL for any kk. We analyze the power of Local k−k-WL and prove that it is more expressive than k−k-WL and at most as expressive as (k+1)−(k+1)-WL. We give a characterization of patterns whose count as a subgraph and induced subgraph are invariant if two graphs are Local k−k-WL equivalent. We also introduce two variants of k−k-WL: Layer k−k-WL and recursive k−k-WL. These methods are more time and space efficient than applying k−k-WL on the whole graph. We also propose a fragmentation technique that guarantees the exact count of all induced subgraphs of size at most 4 using just 1−1-WL. The same idea can be extended further for larger patterns using k>1k>1. We also compare the expressive power of Local k−k-WL with other GNN hierarchies and show that given a bound on the time-complexity, our methods are more expressive than the ones mentioned in Papp and Wattenhofer[2022a]

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Coordinated Robot Navigation via Hierarchical Clustering

    Get PDF
    We introduce the use of hierarchical clustering for relaxed, deterministic coordination and control of multiple robots. Traditionally an unsupervised learning method, hierarchical clustering offers a formalism for identifying and representing spatially cohesive and segregated robot groups at different resolutions by relating the continuous space of configurations to the combinatorial space of trees. We formalize and exploit this relation, developing computationally effective reactive algorithms for navigating through the combinatorial space in concert with geometric realizations for a particular choice of hierarchical clustering method. These constructions yield computationally effective vector field planners for both hierarchically invariant as well as transitional navigation in the configuration space. We apply these methods to the centralized coordination and control of nn perfectly sensed and actuated Euclidean spheres in a dd-dimensional ambient space (for arbitrary nn and dd). Given a desired configuration supporting a desired hierarchy, we construct a hybrid controller which is quadratic in nn and algebraic in dd and prove that its execution brings all but a measure zero set of initial configurations to the desired goal with the guarantee of no collisions along the way.Comment: 29 pages, 13 figures, 8 tables, extended version of a paper in preparation for submission to a journa

    On topological relaxations of chromatic conjectures

    Get PDF
    There are several famous unsolved conjectures about the chromatic number that were relaxed and already proven to hold for the fractional chromatic number. We discuss similar relaxations for the topological lower bound(s) of the chromatic number. In particular, we prove that such a relaxed version is true for the Behzad-Vizing conjecture and also discuss the conjectures of Hedetniemi and of Hadwiger from this point of view. For the latter, a similar statement was already proven in an earlier paper of the first author with G. Tardos, our main concern here is that the so-called odd Hadwiger conjecture looks much more difficult in this respect. We prove that the statement of the odd Hadwiger conjecture holds for large enough Kneser graphs and Schrijver graphs of any fixed chromatic number
    • …
    corecore