1,108 research outputs found

    Exact Covers via Determinants

    Full text link
    Given a k-uniform hypergraph on n vertices, partitioned in k equal parts such that every hyperedge includes one vertex from each part, the k-dimensional matching problem asks whether there is a disjoint collection of the hyperedges which covers all vertices. We show it can be solved by a randomized polynomial space algorithm in time O*(2^(n(k-2)/k)). The O*() notation hides factors polynomial in n and k. When we drop the partition constraint and permit arbitrary hyperedges of cardinality k, we obtain the exact cover by k-sets problem. We show it can be solved by a randomized polynomial space algorithm in time O*(c_k^n), where c_3=1.496, c_4=1.642, c_5=1.721, and provide a general bound for larger k. Both results substantially improve on the previous best algorithms for these problems, especially for small k, and follow from the new observation that Lovasz' perfect matching detection via determinants (1979) admits an embedding in the recently proposed inclusion-exclusion counting scheme for set covers, despite its inability to count the perfect matchings

    Narrow sieves for parameterized paths and packings

    Full text link
    We present randomized algorithms for some well-studied, hard combinatorial problems: the k-path problem, the p-packing of q-sets problem, and the q-dimensional p-matching problem. Our algorithms solve these problems with high probability in time exponential only in the parameter (k, p, q) and using polynomial space; the constant bases of the exponentials are significantly smaller than in previous works. For example, for the k-path problem the improvement is from 2 to 1.66. We also show how to detect if a d-regular graph admits an edge coloring with dd colors in time within a polynomial factor of O(2^{(d-1)n/2}). Our techniques build upon and generalize some recently published ideas by I. Koutis (ICALP 2009), R. Williams (IPL 2009), and A. Bj\"orklund (STACS 2010, FOCS 2010)

    Approximating the monomer-dimer constants through matrix permanent

    Full text link
    The monomer-dimer model is fundamental in statistical mechanics. However, it is #P-complete in computation, even for two dimensional problems. A formulation in matrix permanent for the partition function of the monomer-dimer model is proposed in this paper, by transforming the number of all matchings of a bipartite graph into the number of perfect matchings of an extended bipartite graph, which can be given by a matrix permanent. Sequential importance sampling algorithm is applied to compute the permanents. For two-dimensional lattice with periodic condition, we obtain 0.6627±0.0002 0.6627\pm0.0002, where the exact value is h2=0.662798972834h_2=0.662798972834. For three-dimensional lattice with periodic condition, our numerical result is 0.7847±0.0014 0.7847\pm0.0014, {which agrees with the best known bound 0.7653h30.78620.7653 \leq h_3 \leq 0.7862.}Comment: 6 pages, 2 figure
    corecore