38,891 research outputs found

    A burst search for gravitational waves from binary black holes

    Full text link
    Compact binary coalescence (CBC) is one of the most promising sources of gravitational waves. These sources are usually searched for with matched filters which require accurate calculation of the GW waveforms and generation of large template banks. We present a complementary search technique based on algorithms used in un-modeled searches. Initially designed for detection of un-modeled bursts, which can span a very large set of waveform morphologies, the search algorithm presented here is constrained for targeted detection of the smaller subset of CBC signals. The constraint is based on the assumption of elliptical polarisation for signals received at the detector. We expect that the algorithm is sensitive to CBC signals in a wide range of masses, mass ratios, and spin parameters. In preparation for the analysis of data from the fifth LIGO-Virgo science run (S5), we performed preliminary studies of the algorithm on test data. We present the sensitivity of the search to different types of simulated CBC waveforms. Also, we discuss how to extend the results of the test run into a search over all of the current LIGO-Virgo data set.Comment: 12 pages, 4 figures, 2 tables, submitted for publication in CQG in the special issue for the conference proceedings of GWDAW13; corrected some typos, addressed some minor reviewer comments one section restructured and references updated and correcte

    Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence

    Get PDF
    Rapid detection of compact binary coalescence (CBC) with a network of advanced gravitational-wave detectors will offer a unique opportunity for multi-messenger astronomy. Prompt detection alerts for the astronomical community might make it possible to observe the onset of electromagnetic emission from (CBC). We demonstrate a computationally practical filtering strategy that could produce early-warning triggers before gravitational radiation from the final merger has arrived at the detectors.Comment: 16 pages, 7 figures, published in ApJ. Reformatted preprint with emulateap

    Optimizing gravitational-wave searches for a population of coalescing binaries: Intrinsic parameters

    Full text link
    We revisit the problem of searching for gravitational waves from inspiralling compact binaries in Gaussian coloured noise. For binaries with quasicircular orbits and non-precessing component spins, considering dominant mode emission only, if the intrinsic parameters of the binary are known then the optimal statistic for a single detector is the well-known two-phase matched filter. However, the matched filter signal-to-noise ratio is /not/ in general an optimal statistic for an astrophysical population of signals, since their distribution over the intrinsic parameters will almost certainly not mirror that of noise events, which is determined by the (Fisher) information metric. Instead, the optimal statistic for a given astrophysical distribution will be the Bayes factor, which we approximate using the output of a standard template matched filter search. We then quantify the possible improvement in number of signals detected for various populations of non-spinning binaries: for a distribution of signals uniformly distributed in volume and with component masses distributed uniformly over the range 1m1,2/M241\leq m_{1,2}/M_\odot\leq 24, (m1+m2)/M25(m_1+m_2) /M_\odot\leq 25 at fixed expected SNR, we find 20%\gtrsim 20\% more signals at a false alarm threshold of 10610^{-6}\,Hz in a single detector. The method may easily be generalized to binaries with non-precessing spins.Comment: Version accepted by Phys. Rev.

    MIMO Radar Waveform Optimization With Prior Information of the Extended Target and Clutter

    Get PDF
    The concept of multiple-input multiple-output (MIMO) radar allows each transmitting antenna element to transmit an arbitrary waveform. This provides extra degrees of freedom compared to the traditional transmit beamforming approach. It has been shown in the recent literature that MIMO radar systems have many advantages. In this paper, we consider the joint optimization of waveforms and receiving filters in the MIMO radar for the case of extended target in clutter. A novel iterative algorithm is proposed to optimize the waveforms and receiving filters such that the detection performance can be maximized. The corresponding iterative algorithms are also developed for the case where only the statistics or the uncertainty set of the target impulse response is available. These algorithms guarantee that the SINR performance improves in each iteration step. Numerical results show that the proposed methods have better SINR performance than existing design methods

    Going Deeper with Convolutions

    Full text link
    We propose a deep convolutional neural network architecture codenamed "Inception", which was responsible for setting the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC 2014). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. This was achieved by a carefully crafted design that allows for increasing the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC 2014 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection

    Second-order Democratic Aggregation

    Full text link
    Aggregated second-order features extracted from deep convolutional networks have been shown to be effective for texture generation, fine-grained recognition, material classification, and scene understanding. In this paper, we study a class of orderless aggregation functions designed to minimize interference or equalize contributions in the context of second-order features and we show that they can be computed just as efficiently as their first-order counterparts and they have favorable properties over aggregation by summation. Another line of work has shown that matrix power normalization after aggregation can significantly improve the generalization of second-order representations. We show that matrix power normalization implicitly equalizes contributions during aggregation thus establishing a connection between matrix normalization techniques and prior work on minimizing interference. Based on the analysis we present {\gamma}-democratic aggregators that interpolate between sum ({\gamma}=1) and democratic pooling ({\gamma}=0) outperforming both on several classification tasks. Moreover, unlike power normalization, the {\gamma}-democratic aggregations can be computed in a low dimensional space by sketching that allows the use of very high-dimensional second-order features. This results in a state-of-the-art performance on several datasets

    Deep filter banks for texture recognition, description, and segmentation

    Get PDF
    Visual textures have played a key role in image understanding because they convey important semantics of images, and because texture representations that pool local image descriptors in an orderless manner have had a tremendous impact in diverse applications. In this paper we make several contributions to texture understanding. First, instead of focusing on texture instance and material category recognition, we propose a human-interpretable vocabulary of texture attributes to describe common texture patterns, complemented by a new describable texture dataset for benchmarking. Second, we look at the problem of recognizing materials and texture attributes in realistic imaging conditions, including when textures appear in clutter, developing corresponding benchmarks on top of the recently proposed OpenSurfaces dataset. Third, we revisit classic texture representations, including bag-of-visual-words and the Fisher vectors, in the context of deep learning and show that these have excellent efficiency and generalization properties if the convolutional layers of a deep model are used as filter banks. We obtain in this manner state-of-the-art performance in numerous datasets well beyond textures, an efficient method to apply deep features to image regions, as well as benefit in transferring features from one domain to another.Comment: 29 pages; 13 figures; 8 table
    corecore