51,660 research outputs found

    Information capacity of genetic regulatory elements

    Full text link
    Changes in a cell's external or internal conditions are usually reflected in the concentrations of the relevant transcription factors. These proteins in turn modulate the expression levels of the genes under their control and sometimes need to perform non-trivial computations that integrate several inputs and affect multiple genes. At the same time, the activities of the regulated genes would fluctuate even if the inputs were held fixed, as a consequence of the intrinsic noise in the system, and such noise must fundamentally limit the reliability of any genetic computation. Here we use information theory to formalize the notion of information transmission in simple genetic regulatory elements in the presence of physically realistic noise sources. The dependence of this "channel capacity" on noise parameters, cooperativity and cost of making signaling molecules is explored systematically. We find that, at least in principle, capacities higher than one bit should be achievable and that consequently genetic regulation is not limited the use of binary, or "on-off", components.Comment: 17 pages, 9 figure

    On the Economic Value and Price-Responsiveness of Ramp-Constrained Storage

    Full text link
    The primary concerns of this paper are twofold: to understand the economic value of storage in the presence of ramp constraints and exogenous electricity prices, and to understand the implications of the associated optimal storage management policy on qualitative and quantitative characteristics of storage response to real-time prices. We present an analytic characterization of the optimal policy, along with the associated finite-horizon time-averaged value of storage. We also derive an analytical upperbound on the infinite-horizon time-averaged value of storage. This bound is valid for any achievable realization of prices when the support of the distribution is fixed, and highlights the dependence of the value of storage on ramp constraints and storage capacity. While the value of storage is a non-decreasing function of price volatility, due to the finite ramp rate, the value of storage saturates quickly as the capacity increases, regardless of volatility. To study the implications of the optimal policy, we first present computational experiments that suggest that optimal utilization of storage can, in expectation, induce a considerable amount of price elasticity near the average price, but little or no elasticity far from it. We then present a computational framework for understanding the behavior of storage as a function of price and the amount of stored energy, and for characterization of the buy/sell phase transition region in the price-state plane. Finally, we study the impact of market-based operation of storage on the required reserves, and show that the reserves may need to be expanded to accommodate market-based storage

    Temperature Regulation in Multicore Processors Using Adjustable-Gain Integral Controllers

    Full text link
    This paper considers the problem of temperature regulation in multicore processors by dynamic voltage-frequency scaling. We propose a feedback law that is based on an integral controller with adjustable gain, designed for fast tracking convergence in the face of model uncertainties, time-varying plants, and tight computing-timing constraints. Moreover, unlike prior works we consider a nonlinear, time-varying plant model that trades off precision for simple and efficient on-line computations. Cycle-level, full system simulator implementation and evaluation illustrates fast and accurate tracking of given temperature reference values, and compares favorably with fixed-gain controllers.Comment: 8 pages, 6 figures, IEEE Conference on Control Applications 2015, Accepted Versio

    Experimental phase functions of mm-sized cosmic dust grains

    Full text link
    We present experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3 to 170 degrees. The measured phase functions show two well defined regions i) soft forward peaks and ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions are in agreement with the observed phase functions for the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter sized-grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains

    Dynamic Properties of Charmonium

    Full text link
    Nonrelativistic quark models of charmonia are tested by comparison of theoretical charmonium decay constants, form factors, and γγ\gamma\gamma widths with experiment and lattice gauge computations. The importance of relativistic effects, a running coupling, and the correct implementation of bound state effects are demonstrated. We describe how an improved model and computational techniques resolve several outstanding issues in previous nonrelativistic quark models such as the use of `correction' factors in quark model form factors, artificial energy prescriptions in decay constant calculations, and ad hoc phase space modifications. We comment on the small experimental value of fψf_{\psi''} and the D-wave component of the J/ψJ/\psi. Decay constants and γγ\gamma\gamma widths for bottomonium are also presented.Comment: 22 pages, 22 ps figures (table entries corrected, text modified

    Magnetic Photon Splitting: Computations of Proper-time Rates and Spectra

    Get PDF
    The splitting of photons in the presence of an intense magnetic field has recently found astrophysical applications in polar cap models of gamma-ray pulsars and in magnetar scenarios for soft gamma repeaters. Numerical computation of the polarization-dependent rates of this third order QED process for arbitrary field strengths and energies below pair creation threshold is difficult: thus early analyses focused on analytic developments and simpler asymptotic forms. The recent astrophysical interest spurred the use of the S-matrix approach by Mentzel, Berg and Wunner to determine splitting rates. In this paper, we present numerical computations of a full proper-time expression for the rate of splitting that was obtained by Stoneham, and is exact up to the pair creation threshold. While the numerical results derived here are in accord with the earlier asymptotic forms due to Adler, our computed rates still differ by as much as factors of 3 from the S-matrix re-evaluation of Wilke and Wunner, reflecting the extreme difficulty of generating accurate S-matrix numerics for fields below about \teq{4.4\times 10^{13}}Gauss. We find that our proper-time rates appear very accurate, and exceed Adler's asymptotic specializations significantly only for photon energies just below pair threshold and for supercritical fields, but always by less than a factor of around 2.6. We also provide a useful analytic series expansion for the scattering amplitude valid at low energies.Comment: 13 pages, AASTeX format, including 3 eps figures, ApJ in pres

    A pulsational approach to the luminosity of Horizontal Branch stellar structures

    Full text link
    We discuss an alternative approach to constrain the absolute bolometric luminosity of Zero Age Horizontal Branch structures by using the observational pulsational properties of ab type RR Lyrae stars and theoretical expectations concerning both the relation connecting the pulsational properties of these variables to their evolutionary ones, as luminosity, mass and effective temperature and, also the location in the H-R diagram for the fundamental pulsators instability strip boundaries. Since the main goal of this work is to obtain an evaluation of the ZAHB bolometric luminosity as much as possible independent on stellar evolution theory, we have minimized the use of evolutionary prescriptions, being the only adopted evolutionary input the allowed mass range for fundamental pulsators. Nevertheless, the effects on our final results related to the use of these evolutionary prescriptions have been carefully checked. The reliability of the suggested method to obtain the ZAHB luminosity is shown by applying it to a selected sample of globular clusters (GCs), whose heavy elements abundance covers almost all the complete GCs metallicity range. The results obtained for the ZAHB bolometric luminosities have been compared with evolutionary prescriptions on such quite important quantity as given by recent evolutionary computations has been also performed. The existence of evident mismatches between current results and some evolutionary models has been verified and discussed.Comment: 15 pages, 1 table, 15 figures, postscript file, To be published in MNRA
    corecore