360 research outputs found

    Straight to Shapes: Real-time Detection of Encoded Shapes

    Full text link
    Current object detection approaches predict bounding boxes, but these provide little instance-specific information beyond location, scale and aspect ratio. In this work, we propose to directly regress to objects' shapes in addition to their bounding boxes and categories. It is crucial to find an appropriate shape representation that is compact and decodable, and in which objects can be compared for higher-order concepts such as view similarity, pose variation and occlusion. To achieve this, we use a denoising convolutional auto-encoder to establish an embedding space, and place the decoder after a fast end-to-end network trained to regress directly to the encoded shape vectors. This yields what to the best of our knowledge is the first real-time shape prediction network, running at ~35 FPS on a high-end desktop. With higher-order shape reasoning well-integrated into the network pipeline, the network shows the useful practical quality of generalising to unseen categories similar to the ones in the training set, something that most existing approaches fail to handle.Comment: 16 pages including appendix; Published at CVPR 201

    Multimodal learning from visual and remotely sensed data

    Get PDF
    Autonomous vehicles are often deployed to perform exploration and monitoring missions in unseen environments. In such applications, there is often a compromise between the information richness and the acquisition cost of different sensor modalities. Visual data is usually very information-rich, but requires in-situ acquisition with the robot. In contrast, remotely sensed data has a larger range and footprint, and may be available prior to a mission. In order to effectively and efficiently explore and monitor the environment, it is critical to make use of all of the sensory information available to the robot. One important application is the use of an Autonomous Underwater Vehicle (AUV) to survey the ocean floor. AUVs can take high resolution in-situ photographs of the sea floor, which can be used to classify different regions into various habitat classes that summarise the observed physical and biological properties. This is known as benthic habitat mapping. However, since AUVs can only image a tiny fraction of the ocean floor, habitat mapping is usually performed with remotely sensed bathymetry (ocean depth) data, obtained from shipborne multibeam sonar. With the recent surge in unsupervised feature learning and deep learning techniques, a number of previous techniques have investigated the concept of multimodal learning: capturing the relationship between different sensor modalities in order to perform classification and other inference tasks. This thesis proposes related techniques for visual and remotely sensed data, applied to the task of autonomous exploration and monitoring with an AUV. Doing so enables more accurate classification of the benthic environment, and also assists autonomous survey planning. The first contribution of this thesis is to apply unsupervised feature learning techniques to marine data. The proposed techniques are used to extract features from image and bathymetric data separately, and the performance is compared to that with more traditionally used features for each sensor modality. The second contribution is the development of a multimodal learning architecture that captures the relationship between the two modalities. The model is robust to missing modalities, which means it can extract better features for large-scale benthic habitat mapping, where only bathymetry is available. The model is used to perform classification with various combinations of modalities, demonstrating that multimodal learning provides a large performance improvement over the baseline case. The third contribution is an extension of the standard learning architecture using a gated feature learning model, which enables the model to better capture the ‘one-to-many’ relationship between visual and bathymetric data. This opens up further inference capabilities, with the ability to predict visual features from bathymetric data, which allows image-based queries. Such queries are useful for AUV survey planning, especially when supervised labels are unavailable. The final contribution is the novel derivation of a number of information-theoretic measures to aid survey planning. The proposed measures predict the utility of unobserved areas, in terms of the amount of expected additional visual information. As such, they are able to produce utility maps over a large region that can be used by the AUV to determine the most informative locations from a set of candidate missions. The models proposed in this thesis are validated through extensive experiments on real marine data. Furthermore, the introduced techniques have applications in various other areas within robotics. As such, this thesis concludes with a discussion on the broader implications of these contributions, and the future research directions that arise as a result of this work

    Scheduled Denoising Autoencoders

    Get PDF
    We present a representation learning method that learns features at multiple dif-ferent levels of scale. Working within the unsupervised framework of denoising autoencoders, we observe that when the input is heavily corrupted during train-ing, the network tends to learn coarse-grained features, whereas when the input is only slightly corrupted during training, the network tends to learn fine-grained features. This motivates the scheduled denoising autoencoder, which starts with a high level of input noise that lowers as training progresses. We find that the result-ing representation yields a significant boost on a later supervised task compared to the original input, or to a standard denoising autoencoder trained at a single noise level.

    Generating tabular datasets under differential privacy

    Full text link
    Machine Learning (ML) is accelerating progress across fields and industries, but relies on accessible and high-quality training data. Some of the most important datasets are found in biomedical and financial domains in the form of spreadsheets and relational databases. But this tabular data is often sensitive in nature. Synthetic data generation offers the potential to unlock sensitive data, but generative models tend to memorise and regurgitate training data, which undermines the privacy goal. To remedy this, researchers have incorporated the mathematical framework of Differential Privacy (DP) into the training process of deep neural networks. But this creates a trade-off between the quality and privacy of the resulting data. Generative Adversarial Networks (GANs) are the dominant paradigm for synthesising tabular data under DP, but suffer from unstable adversarial training and mode collapse, which are exacerbated by the privacy constraints and challenging tabular data modality. This work optimises the quality-privacy trade-off of generative models, producing higher quality tabular datasets with the same privacy guarantees. We implement novel end-to-end models that leverage attention mechanisms to learn reversible tabular representations. We also introduce TableDiffusion, the first differentially-private diffusion model for tabular data synthesis. Our experiments show that TableDiffusion produces higher-fidelity synthetic datasets, avoids the mode collapse problem, and achieves state-of-the-art performance on privatised tabular data synthesis. By implementing TableDiffusion to predict the added noise, we enabled it to bypass the challenges of reconstructing mixed-type tabular data. Overall, the diffusion paradigm proves vastly more data and privacy efficient than the adversarial paradigm, due to augmented re-use of each data batch and a smoother iterative training process
    • …
    corecore