2,032 research outputs found

    A Fast Convergence Density Evolution Algorithm for Optimal Rate LDPC Codes in BEC

    Full text link
    We derive a new fast convergent Density Evolution algorithm for finding optimal rate Low-Density Parity-Check (LDPC) codes used over the binary erasure channel (BEC). The fast convergence property comes from the modified Density Evolution (DE), a numerical method for analyzing the behavior of iterative decoding convergence of a LDPC code. We have used the method of [16] for designing of a LDPC code with optimal rate. This has been done for a given parity check node degree distribution, erasure probability and specified DE constraint. The fast behavior of DE and found optimal rate with this method compare with the previous DE constraint.Comment: This Paper is a draft of final paper which represented in 7th International Symposium on Telecommunications (IST'2014

    Stopping Set Distributions of Some Linear Codes

    Full text link
    Stopping sets and stopping set distribution of an low-density parity-check code are used to determine the performance of this code under iterative decoding over a binary erasure channel (BEC). Let CC be a binary [n,k][n,k] linear code with parity-check matrix HH, where the rows of HH may be dependent. A stopping set SS of CC with parity-check matrix HH is a subset of column indices of HH such that the restriction of HH to SS does not contain a row of weight one. The stopping set distribution {Ti(H)}i=0n\{T_i(H)\}_{i=0}^n enumerates the number of stopping sets with size ii of CC with parity-check matrix HH. Note that stopping sets and stopping set distribution are related to the parity-check matrix HH of CC. Let H∗H^{*} be the parity-check matrix of CC which is formed by all the non-zero codewords of its dual code C⊥C^{\perp}. A parity-check matrix HH is called BEC-optimal if Ti(H)=Ti(H∗),i=0,1,...,nT_i(H)=T_i(H^*), i=0,1,..., n and HH has the smallest number of rows. On the BEC, iterative decoder of CC with BEC-optimal parity-check matrix is an optimal decoder with much lower decoding complexity than the exhaustive decoder. In this paper, we study stopping sets, stopping set distributions and BEC-optimal parity-check matrices of binary linear codes. Using finite geometry in combinatorics, we obtain BEC-optimal parity-check matrices and then determine the stopping set distributions for the Simplex codes, the Hamming codes, the first order Reed-Muller codes and the extended Hamming codes.Comment: 33 pages, submitted to IEEE Trans. Inform. Theory, Feb. 201

    Doubly-Generalized LDPC Codes: Stability Bound over the BEC

    Full text link
    The iterative decoding threshold of low-density parity-check (LDPC) codes over the binary erasure channel (BEC) fulfills an upper bound depending only on the variable and check nodes with minimum distance 2. This bound is a consequence of the stability condition, and is here referred to as stability bound. In this paper, a stability bound over the BEC is developed for doubly-generalized LDPC codes, where the variable and the check nodes can be generic linear block codes, assuming maximum a posteriori erasure correction at each node. It is proved that in this generalized context as well the bound depends only on the variable and check component codes with minimum distance 2. A condition is also developed, namely the derivative matching condition, under which the bound is achieved with equality.Comment: Submitted to IEEE Trans. on Inform. Theor

    Proving Threshold Saturation for Nonbinary SC-LDPC Codes on the Binary Erasure Channel

    Get PDF
    We analyze nonbinary spatially-coupled low-density parity-check (SC-LDPC) codes built on the general linear group for transmission over the binary erasure channel. We prove threshold saturation of the belief propagation decoding to the potential threshold, by generalizing the proof technique based on potential functions recently introduced by Yedla et al.. The existence of the potential function is also discussed for a vector sparse system in the general case, and some existence conditions are developed. We finally give density evolution and simulation results for several nonbinary SC-LDPC code ensembles.Comment: in Proc. 2014 XXXIth URSI General Assembly and Scientific Symposium, URSI GASS, Beijing, China, August 16-23, 2014. Invited pape

    Low-Density Parity-Check Codes From Transversal Designs With Improved Stopping Set Distributions

    Full text link
    This paper examines the construction of low-density parity-check (LDPC) codes from transversal designs based on sets of mutually orthogonal Latin squares (MOLS). By transferring the concept of configurations in combinatorial designs to the level of Latin squares, we thoroughly investigate the occurrence and avoidance of stopping sets for the arising codes. Stopping sets are known to determine the decoding performance over the binary erasure channel and should be avoided for small sizes. Based on large sets of simple-structured MOLS, we derive powerful constraints for the choice of suitable subsets, leading to improved stopping set distributions for the corresponding codes. We focus on LDPC codes with column weight 4, but the results are also applicable for the construction of codes with higher column weights. Finally, we show that a subclass of the presented codes has quasi-cyclic structure which allows low-complexity encoding.Comment: 11 pages; to appear in "IEEE Transactions on Communications
    • …
    corecore