194 research outputs found

    Point-to-point connectivity between neuromorphic chips using address events

    Get PDF
    This paper discusses connectivity between neuromorphic chips, which use the timing of fixed-height fixed-width pulses to encode information. Address-events (log2 (N)-bit packets that uniquely identify one of N neurons) are used to transmit these pulses in real time on a random-access time-multiplexed communication channel. Activity is assumed to consist of neuronal ensembles--spikes clustered in space and in time. This paper quantifies tradeoffs faced in allocating bandwidth, granting access, and queuing, as well as throughput requirements, and concludes that an arbitered channel design is the best choice.The arbitered channel is implemented with a formal design methodology for asynchronous digital VLSI CMOS systems, after introducing the reader to this top-down synthesis technique. Following the evolution of three generations of designs, it is shown how the overhead of arbitrating, and encoding and decoding, can be reduced in area (from N to √N) by organizing neurons into rows and columns, and reduced in time (from log2 (N) to 2) by exploiting locality in the arbiter tree and in the row–column architecture, and clustered activity. Throughput is boosted by pipelining and by reading spikes in parallel. Simple techniques that reduce crosstalk in these mixed analog–digital systems are described

    A turbo-coded burst-by-burst adaptive wide-band speech transceiver

    Full text link

    On Trellis-Based Truncated-Memory Detection

    Full text link

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems

    Interactive Streaming of Stored Multiview Video Using Redundant Frame Structures

    Full text link

    Technical advances in digital audio radio broadcasting

    Get PDF

    Performance and area evaluations of processor-based benchmarks on FPGA devices

    Get PDF
    The computing system on SoCs is being long-term research since the FPGA technology has emerged due to its personality of re-programmable fabric, reconfigurable computing, and fast development time to market. During the last decade, uni-processor in a SoC is no longer to deal with the high growing market for complex applications such as Mobile Phones audio and video encoding, image and network processing. Due to the number of transistors on a silicon wafer is increasing, the recent FPGAs or embedded systems are advancing toward multi-processor-based design to meet tremendous performance and benefit this kind of systems are possible. Therefore, is an upcoming age of the MPSoC. In addition, most of the embedded processors are soft-cores, because they are flexible and reconfigurable for specific software functions and easy to build homogenous multi-processor systems for parallel programming. Moreover, behavioural synthesis tools are becoming a lot more powerful and enable to create datapath of logic units from high-level algorithms such as C to HDL and available for partitioning a HW/SW concurrent methodology. A range of embedded processors is able to implement on a FPGA-based prototyping to integrate the CPUs on a programmable device. This research is, firstly represent different types of computer architectures in modern embedded processors that are followed in different type of software applications (eg. Multi-threading Operations or Complex Functions) on FPGA-based SoCs; and secondly investigate their capability by executing a wide-range of multimedia software codes (Integer-algometric only) in different models of the processor-systems (uni-processor or multi-processor or Co-design), and finally compare those results in terms of the benchmarks and resource utilizations within FPGAs. All the examined programs were written in standard C and executed in a variety numbers of soft-core processors or hardware units to obtain the execution times. However, the number of processors and their customizable configuration or hardware datapath being generated are limited by a target FPGA resource, and designers need to understand the FPGA-based tradeoffs that have been considered - Speed versus Area. For this experimental purpose, I defined benchmarks into DLP / HLS catalogues, which are "data" and "function" intensive respectively. The programs of DLP will be executed in LEON3 MP and LE1 CMP multi-processor systems and the programs of HLS in the LegUp Co-design system on target FPGAs. In preliminary, the performance of the soft-core processors will be examined by executing all the benchmarks. The whole story of this thesis work centres on the issue of the execute times or the speed-up and area breakdown on FPGA devices in terms of different programs
    • …
    corecore