14,688 research outputs found

    Smart Grid Security: Threats, Challenges, and Solutions

    Get PDF
    The cyber-physical nature of the smart grid has rendered it vulnerable to a multitude of attacks that can occur at its communication, networking, and physical entry points. Such cyber-physical attacks can have detrimental effects on the operation of the grid as exemplified by the recent attack which caused a blackout of the Ukranian power grid. Thus, to properly secure the smart grid, it is of utmost importance to: a) understand its underlying vulnerabilities and associated threats, b) quantify their effects, and c) devise appropriate security solutions. In this paper, the key threats targeting the smart grid are first exposed while assessing their effects on the operation and stability of the grid. Then, the challenges involved in understanding these attacks and devising defense strategies against them are identified. Potential solution approaches that can help mitigate these threats are then discussed. Last, a number of mathematical tools that can help in analyzing and implementing security solutions are introduced. As such, this paper will provide the first comprehensive overview on smart grid security

    One Breaker is Enough: Hidden Topology Attacks on Power Grids

    Full text link
    A coordinated cyber-attack on grid meter readings and breaker statuses can lead to incorrect state estimation that can subsequently destabilize the grid. This paper studies cyber-attacks by an adversary that changes breaker statuses on transmission lines to affect the estimation of the grid topology. The adversary, however, is incapable of changing the value of any meter data and can only block recorded measurements on certain lines from being transmitted to the control center. The proposed framework, with limited resource requirements as compared to standard data attacks, thus extends the scope of cyber-attacks to grids secure from meter corruption. We discuss necessary and sufficient conditions for feasible attacks using a novel graph-coloring based analysis and show that an optimal attack requires breaker status change at only ONE transmission line. The potency of our attack regime is demonstrated through simulations on IEEE test cases.Comment: 5 pages, 5 figures, Accepted to the IEEE PES General Meeting 201

    Jamming aided Generalized Data Attacks: Exposing Vulnerabilities in Secure Estimation

    Full text link
    Jamming refers to the deletion, corruption or damage of meter measurements that prevents their further usage. This is distinct from adversarial data injection that changes meter readings while preserving their utility in state estimation. This paper presents a generalized attack regime that uses jamming of secure and insecure measurements to greatly expand the scope of common 'hidden' and 'detectable' data injection attacks in literature. For 'hidden' attacks, it is shown that with jamming, the optimal attack is given by the minimum feasible cut in a specific weighted graph. More importantly, for 'detectable' data attacks, this paper shows that the entire range of relative costs for adversarial jamming and data injection can be divided into three separate regions, with distinct graph-cut based constructions for the optimal attack. Approximate algorithms for attack design are developed and their performances are demonstrated by simulations on IEEE test cases. Further, it is proved that prevention of such attacks require security of all grid measurements. This work comprehensively quantifies the dual adversarial benefits of jamming: (a) reduced attack cost and (b) increased resilience to secure measurements, that strengthen the potency of data attacks.Comment: 11 pages, 8 figures, A version of this will appear in HICSS 201
    • …
    corecore