42,368 research outputs found

    Technical Report: Compressive Temporal Higher Order Cyclostationary Statistics

    Full text link
    The application of nonlinear transformations to a cyclostationary signal for the purpose of revealing hidden periodicities has proven to be useful for applications requiring signal selectivity and noise tolerance. The fact that the hidden periodicities, referred to as cyclic moments, are often compressible in the Fourier domain motivates the use of compressive sensing (CS) as an efficient acquisition protocol for capturing such signals. In this work, we consider the class of Temporal Higher Order Cyclostationary Statistics (THOCS) estimators when CS is used to acquire the cyclostationary signal assuming compressible cyclic moments in the Fourier domain. We develop a theoretical framework for estimating THOCS using the low-rate nonuniform sampling protocol from CS and illustrate the performance of this framework using simulated data

    Eigenvalue-based Cyclostationary Spectrum Sensing Using Multiple Antennas

    Full text link
    In this paper, we propose a signal-selective spectrum sensing method for cognitive radio networks and specifically targeted for receivers with multiple-antenna capability. This method is used for detecting the presence or absence of primary users based on the eigenvalues of the cyclic covariance matrix of received signals. In particular, the cyclic correlation significance test is used to detect a specific signal-of-interest by exploiting knowledge of its cyclic frequencies. The analytical threshold for achieving constant false alarm rate using this detection method is presented, verified through simulations, and shown to be independent of both the number of samples used and the noise variance, effectively eliminating the dependence on accurate noise estimation. The proposed method is also shown, through numerical simulations, to outperform existing multiple-antenna cyclostationary-based spectrum sensing algorithms under a quasi-static Rayleigh fading channel, in both spatially correlated and uncorrelated noise environments. The algorithm also has significantly lower computational complexity than these other approaches.Comment: 6 pages, 6 figures, accepted to IEEE GLOBECOM 201

    Visualization on colour based flow vector of thermal image for movement detection during interactive session

    Get PDF
    Recently thermal imaging is exploited in applications such as motion and face detection. It has drawn attention many researchers to build such technology to improve lifestyle. This work proposed a technique to detect and identify a motion in sequence images for the application in security monitoring system or outdoor surveillance. Conventional system might cause false information with the present of shadow. Thus, methods employed in this work are Canny edge detector method, Lucas Kanade and Horn Shunck algorithms, to overcome the major problem when using thresholding method, which is only intensity or pixel magnitude is considered instead of relationships between the pixels. The results obtained could be observed in flow vector parameter and the segmentation colour based image for the time frame from 1 to 10 seconds. The visualization of both the parameters clarified the movement and changes of pixel intensity between two frames by the supportive colour segmentation, either in smooth or rough motion. Thus, this technique may contribute to others application such as biometrics, military system, and surveillance machine

    Validation of in situ applicable measuring techniques for analysis of the water adsorption by stone

    Get PDF
    As the water adsorbing behaviour (WAB) of stone is a key factor for most degradation processes, its analysis is a decisive aspect when monitoring deterioration and past conservation treatments, or when selecting a proper conservation treatment. In this study the performance of various non-destructive methods for measuring the WAB are compared, with the focus on the effect of the variable factors of the methods caused by their specific design. The methods under study are the contact-sponge method (CSM), the Karsten tube (KT) and the Mirowski pipe (MIR). Their performance is compared with the standardized capillary rise method (CR) and the results are analysed in relation to the open porosity of different lithotypes. Furthermore the effect of practical encumbrances which could limit the application of these methods was valuated. It was found that KT and CSM have complementary fields of investigation, where CSM is capable of measuring the initial water uptake of less porous materials with a high precision, while KT was found commodious for measuring longer contact times for more porous lithotypes. MIR showed too many discommodities, leading to unreliable results. To adequately compare the results of the different methods, the size of the contact area appears to be the most influential factor, whereas the contact material and pressure on the surface do not indicate a significant influence on the results. The study of these factors is currently being extended by visualization of the water adsorption process via X-ray and neutron radiography in combination with physico-mathematical models describing the WAB
    • …
    corecore