35 research outputs found

    Quantum Stabilizer Codes, Lattices, and CFTs

    Get PDF
    There is a rich connection between classical error-correcting codes, Euclidean lattices, and chiral conformal field theories. Here we show that quantum error-correcting codes, those of the stabilizer type, are related to Lorentzian lattices and non-chiral CFTs. More specifically, real self-dual stabilizer codes can be associated with even self-dual Lorentzian lattices, and thus define Narain CFTs. We dub the resulting theories code CFTs and study their properties. T-duality transformations of a code CFT, at the level of the underlying code, reduce to code equivalences. By means of such equivalences, any stabilizer code can be reduced to a graph code. We can therefore represent code CFTs by graphs. We study code CFTs with small central charge c = n ≤ 12, and find many interesting examples. Among them is a non-chiral E8 theory, which is based on the root lattice of E8 understood as an even self-dual Lorentzian lattice. By analyzing all graphs with n ≤ 8 nodes we find many pairs and triples of physically distinct isospectral theories. We also construct numerous modular invariant functions satisfying all the basic properties expected of the CFT partition function, yet which are not partition functions of any known CFTs. We consider the ensemble average over all code theories, calculate the corresponding partition function, and discuss its possible holographic interpretation. The paper is written in a self-contained manner, and includes an extensive pedagogical introduction and many explicit examples

    Optimal Quaternary Hermitian Linear Complementary Dual Codes for Entanglement-Assisted Quantum Error Correction

    Get PDF
    The objective of this thesis is to find suboptimal and optimal parameters from classical codes and import them into entanglement-assisted quantum codes. The thesis begins by introducing classical error correction, followed by a detailed introduction to quantum computing. Topics that are discussed in the introduction include qubits, quantum phenomena, such as superposition and entanglement, and quantum gates/circuits. The thesis then reviews the basics of quantum error correction and provides Shor's code to reinforce the reader's understanding. Subsequently, the formalism of stabilizer codes is thoroughly examined. We then explain the generalized concept of stabilizer codes which is entanglement-assisted quantum codes. They do not require generators to satisfy the commutativity property. Rather, they utilize the usage of ebits to resolve the anti-commutativity constraint. Next, the thesis explains quaternary field and then the Java program implemented to find the optimal parameters. Lastly, the thesis concludes with presenting the parameters of the new codes that were obtained throughout the research. We have found the suboptimal largest distance for quaternary hermitian linear complementary dual codes that can be imported as entanglement-assisted quantum error correction for parameters [22, 9, 9 or 10]â‚„, [22, 12, 7 or 8]â‚„, [23, 8, 11 or 12]â‚„, [23, 10, 9 or 10]â‚„, [23, 13, 7 or 8]â‚„, [24, 10, 10 or 11]â‚„, [24, 11, 9 or 10]â‚„, [24, 14, 7 or 8]â‚„, [25, 12, 9 or 10]â‚„, [25, 13, 8 or 9]â‚„, as well as the optimal largest distance for [17, 11, 5]â‚„ and [17, 13, 3]â‚„

    Subshifts with Simple Cellular Automata

    Get PDF
    A subshift is a set of infinite one- or two-way sequences over a fixed finite set, defined by a set of forbidden patterns. In this thesis, we study subshifts in the topological setting, where the natural morphisms between them are ones defined by a (spatially uniform) local rule. Endomorphisms of subshifts are called cellular automata, and we call the set of cellular automata on a subshift its endomorphism monoid. It is known that the set of all sequences (the full shift) allows cellular automata with complex dynamical and computational properties. We are interested in subshifts that do not support such cellular automata. In particular, we study countable subshifts, minimal subshifts and subshifts with additional universal algebraic structure that cellular automata need to respect, and investigate certain criteria of ‘simplicity’ of the endomorphism monoid, for each of them. In the case of countable subshifts, we concentrate on countable sofic shifts, that is, countable subshifts defined by a finite state automaton. We develop some general tools for studying cellular automata on such subshifts, and show that nilpotency and periodicity of cellular automata are decidable properties, and positive expansivity is impossible. Nevertheless, we also prove various undecidability results, by simulating counter machines with cellular automata. We prove that minimal subshifts generated by primitive Pisot substitutions only support virtually cyclic automorphism groups, and give an example of a Toeplitz subshift whose automorphism group is not finitely generated. In the algebraic setting, we study the centralizers of CA, and group and lattice homomorphic CA. In particular, we obtain results about centralizers of symbol permutations and bipermutive CA, and their connections with group structures.Siirretty Doriast

    Ternary linear codes

    Get PDF
    iii+69hlm.;24c

    Distributed space-time coding including the golden code with application in cooperative networks

    Get PDF
    This thesis presents new methodologies to improve performance of wireless cooperative networks using the Golden Code. As a form of space-time coding, the Golden Code can achieve diversity-multiplexing tradeoff and the data rate can be twice that of the Alamouti code. In practice, however, asynchronism between relay nodes may reduce performance and channel quality can be degraded from certain antennas. Firstly, a simple offset transmission scheme, which employs full interference cancellation (FIC) and orthogonal frequency division multiplexing (OFDM), is enhanced through the use of four relay nodes and receiver processing to mitigate asynchronism. Then, the potential reduction in diversity gain due to the dependent channel matrix elements in the distributed Golden Code transmission, and the rate penalty of multihop transmission, are mitigated by relay selection based on two-way transmission. The Golden Code is also implemented in an asynchronous one-way relay network over frequency flat and selective channels, and a simple approach to overcome asynchronism is proposed. In one-way communication with computationally efficient sphere decoding, the maximum of the channel parameter means is shown to achieve the best performance for the relay selection through bit error rate simulations. Secondly, to reduce the cost of hardware when multiple antennas are available in a cooperative network, multi-antenna selection is exploited. In this context, maximum-sum transmit antenna selection is proposed. End-to-end signal-to-noise ratio (SNR) is calculated and outage probability analysis is performed when the links are modelled as Rayleigh fading frequency flat channels. The numerical results support the analysis and for a MIMO system maximum-sum selection is shown to outperform maximum-minimum selection. Additionally, pairwise error probability (PEP) analysis is performed for maximum-sum transmit antenna selection with the Golden Code and the diversity order is obtained. Finally, with the assumption of fibre-connected multiple antennas with finite buffers, multiple-antenna selection is implemented on the basis of maximum-sum antenna selection. Frequency flat Rayleigh fading channels are assumed together with a decode and forward transmission scheme. Outage probability analysis is performed by exploiting the steady-state stationarity of a Markov Chain model

    Normalizer Circuits and Quantum Computation

    Full text link
    (Abridged abstract.) In this thesis we introduce new models of quantum computation to study the emergence of quantum speed-up in quantum computer algorithms. Our first contribution is a formalism of restricted quantum operations, named normalizer circuit formalism, based on algebraic extensions of the qubit Clifford gates (CNOT, Hadamard and π/4\pi/4-phase gates): a normalizer circuit consists of quantum Fourier transforms (QFTs), automorphism gates and quadratic phase gates associated to a set GG, which is either an abelian group or abelian hypergroup. Though Clifford circuits are efficiently classically simulable, we show that normalizer circuit models encompass Shor's celebrated factoring algorithm and the quantum algorithms for abelian Hidden Subgroup Problems. We develop classical-simulation techniques to characterize under which scenarios normalizer circuits provide quantum speed-ups. Finally, we devise new quantum algorithms for finding hidden hyperstructures. The results offer new insights into the source of quantum speed-ups for several algebraic problems. Our second contribution is an algebraic (group- and hypergroup-theoretic) framework for describing quantum many-body states and classically simulating quantum circuits. Our framework extends Gottesman's Pauli Stabilizer Formalism (PSF), wherein quantum states are written as joint eigenspaces of stabilizer groups of commuting Pauli operators: while the PSF is valid for qubit/qudit systems, our formalism can be applied to discrete- and continuous-variable systems, hybrid settings, and anyonic systems. These results enlarge the known families of quantum processes that can be efficiently classically simulated. This thesis also establishes a precise connection between Shor's quantum algorithm and the stabilizer formalism, revealing a common mathematical structure in several quantum speed-ups and error-correcting codes.Comment: PhD thesis, Technical University of Munich (2016). Please cite original papers if possible. Appendix E contains unpublished work on Gaussian unitaries. If you spot typos/omissions please email me at JLastNames at posteo dot net. Source: http://bit.ly/2gMdHn3. Related video talk: https://www.perimeterinstitute.ca/videos/toy-theory-quantum-speed-ups-based-stabilizer-formalism Posted on my birthda

    Quantum information processing with Clifford quantum cellular automata

    Get PDF
    [no abstract
    corecore