774 research outputs found

    On Cyclic Edge-Connectivity of Fullerenes

    Full text link
    A graph is said to be cyclic kk-edge-connected, if at least kk edges must be removed to disconnect it into two components, each containing a cycle. Such a set of kk edges is called a cyclic-kk-edge cutset and it is called a trivial cyclic-kk-edge cutset if at least one of the resulting two components induces a single kk-cycle. It is known that fullerenes, that is, 3-connected cubic planar graphs all of whose faces are pentagons and hexagons, are cyclic 5-edge-connected. In this article it is shown that a fullerene FF containing a nontrivial cyclic-5-edge cutset admits two antipodal pentacaps, that is, two antipodal pentagonal faces whose neighboring faces are also pentagonal. Moreover, it is shown that FF has a Hamilton cycle, and as a consequence at least 152n2015\cdot 2^{\lfloor \frac{n}{20}\rfloor} perfect matchings, where nn is the order of FF.Comment: 11 pages, 9 figure

    Fullerenes with the maximum Clar number

    Full text link
    The Clar number of a fullerene is the maximum number of independent resonant hexagons in the fullerene. It is known that the Clar number of a fullerene with n vertices is bounded above by [n/6]-2. We find that there are no fullerenes whose order n is congruent to 2 modulo 6 attaining this bound. In other words, the Clar number for a fullerene whose order n is congruent to 2 modulo 6 is bounded above by [n/6]-3. Moreover, we show that two experimentally produced fullerenes C80:1 (D5d) and C80:2 (D2) attain this bound. Finally, we present a graph-theoretical characterization for fullerenes, whose order n is congruent to 2 (respectively, 4) modulo 6, achieving the maximum Clar number [n/6]-3 (respectively, [n/6]-2)

    Fullerene graphs have exponentially many perfect matchings

    Full text link
    A fullerene graph is a planar cubic 3-connected graph with only pentagonal and hexagonal faces. We show that fullerene graphs have exponentially many perfect matchings.Comment: 7 pages, 3 figure

    2-Resonant fullerenes

    Full text link
    A fullerene graph FF is a planar cubic graph with exactly 12 pentagonal faces and other hexagonal faces. A set H\mathcal{H} of disjoint hexagons of FF is called a resonant pattern (or sextet pattern) if FF has a perfect matching MM such that every hexagon in H\mathcal{H} is MM-alternating. FF is said to be kk-resonant if any ii (0ik0\leq i\leq k) disjoint hexagons of FF form a resonant pattern. It was known that each fullerene graph is 1-resonant and all 3-resonant fullerenes are only the nine graphs. In this paper, we show that the fullerene graphs which do not contain the subgraph LL or RR as illustrated in Fig. 1 are 2-resonant except for the specific eleven graphs. This result implies that each IPR fullerene is 2-resonant.Comment: 34 pages, 25 figure
    corecore