15,675 research outputs found

    A Study on the Impact of Locality in the Decoding of Binary Cyclic Codes

    Full text link
    In this paper, we study the impact of locality on the decoding of binary cyclic codes under two approaches, namely ordered statistics decoding (OSD) and trellis decoding. Given a binary cyclic code having locality or availability, we suitably modify the OSD to obtain gains in terms of the Signal-To-Noise ratio, for a given reliability and essentially the same level of decoder complexity. With regard to trellis decoding, we show that careful introduction of locality results in the creation of cyclic subcodes having lower maximum state complexity. We also present a simple upper-bounding technique on the state complexity profile, based on the zeros of the code. Finally, it is shown how the decoding speed can be significantly increased in the presence of locality, in the moderate-to-high SNR regime, by making use of a quick-look decoder that often returns the ML codeword.Comment: Extended version of a paper submitted to ISIT 201

    Quasi-cyclic subcodes of cyclic codes

    Full text link
    We completely characterize possible indices of quasi-cyclic subcodes in a cyclic code for a very broad class of cyclic codes. We present enumeration results for quasi-cyclic subcodes of a fixed index and show that the problem of enumeration is equivalent to enumeration of certain vector subspaces in finite fields. In particular, we present enumeration results for quasi-cyclic subcodes of the simplex code and duals of certain BCH codes. Our results are based on the trace representation of cyclic codes

    Constructions of Quantum Convolutional Codes

    Get PDF
    We address the problems of constructing quantum convolutional codes (QCCs) and of encoding them. The first construction is a CSS-type construction which allows us to find QCCs of rate 2/4. The second construction yields a quantum convolutional code by applying a product code construction to an arbitrary classical convolutional code and an arbitrary quantum block code. We show that the resulting codes have highly structured and efficient encoders. Furthermore, we show that the resulting quantum circuits have finite depth, independent of the lengths of the input stream, and show that this depth is polynomial in the degree and frame size of the code.Comment: 5 pages, to appear in the Proceedings of the 2007 IEEE International Symposium on Information Theor
    corecore