2,678 research outputs found

    On the performance of 1-level LDPC lattices

    Full text link
    The low-density parity-check (LDPC) lattices perform very well in high dimensions under generalized min-sum iterative decoding algorithm. In this work we focus on 1-level LDPC lattices. We show that these lattices are the same as lattices constructed based on Construction A and low-density lattice-code (LDLC) lattices. In spite of having slightly lower coding gain, 1-level regular LDPC lattices have remarkable performances. The lower complexity nature of the decoding algorithm for these type of lattices allows us to run it for higher dimensions easily. Our simulation results show that a 1-level LDPC lattice of size 10000 can work as close as 1.1 dB at normalized error probability (NEP) of 10510^{-5}.This can also be reported as 0.6 dB at symbol error rate (SER) of 10510^{-5} with sum-product algorithm.Comment: 1 figure, submitted to IWCIT 201

    Topological Color Codes and Two-Body Quantum Lattice Hamiltonians

    Get PDF
    Topological color codes are among the stabilizer codes with remarkable properties from quantum information perspective. In this paper we construct a four-valent lattice, the so called ruby lattice, governed by a 2-body Hamiltonian. In a particular regime of coupling constants, degenerate perturbation theory implies that the low energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. The gauge symmetry Z2×Z2\mathbf{Z}_{2}\times\mathbf{Z}_{2} of color code could already be realized by identifying three distinct plaquette operators on the lattice. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other giving rise to exact topological degeneracy of the model. Connection to 2-colexes can be established at the non-perturbative level. The particular structure of the 2-body Hamiltonian provides a fruitful interpretation in terms of mapping to bosons coupled to effective spins. We show that high energy excitations of the model have fermionic statistics. They form three families of high energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. Also, we use Jordan-Wigner transformation in order to test the integrability of the model via introducing of Majorana fermions. The four-valent structure of the lattice prevents to reduce the fermionized Hamiltonian into a quadratic form due to interacting gauge fields. We also propose another construction for 2-body Hamiltonian based on the connection between color codes and cluster states. We discuss this latter approach along the construction based on the ruby lattice.Comment: 56 pages, 16 figures, published version

    Constructions and Noise Threshold of Hyperbolic Surface Codes

    Full text link
    We show how to obtain concrete constructions of homological quantum codes based on tilings of 2D surfaces with constant negative curvature (hyperbolic surfaces). This construction results in two-dimensional quantum codes whose tradeoff of encoding rate versus protection is more favorable than for the surface code. These surface codes would require variable length connections between qubits, as determined by the hyperbolic geometry. We provide numerical estimates of the value of the noise threshold and logical error probability of these codes against independent X or Z noise, assuming noise-free error correction

    Long-range quantum entanglement in noisy cluster states

    Full text link
    We describe a phase transition for long-range entanglement in a three-dimensional cluster state affected by noise. The partially decohered state is modeled by the thermal state of a suitable Hamiltonian. We find that the temperature at which the entanglement length changes from infinite to finite is nonzero. We give an upper and lower bound to this transition temperature.Comment: 7 page

    Finite-state codes

    Get PDF
    A class of codes called finite-state (FS) codes is defined and investigated. The codes, which generalize both block and convolutional codes, are defined by their encoders, which are finite-state machines with parallel inputs and outputs. A family of upper bounds on the free distance of a given FS code is derived. A general construction for FS codes is given, and it is shown that in many cases the FS codes constructed in this way have a free distance that is the largest possible. Catastrophic error propagation (CEP) for FS codes is also discussed. It is found that to avoid CEP one must solve the graph-theoretic problem of finding a uniquely decodable edge labeling of the state diagram

    Homological Error Correction: Classical and Quantum Codes

    Get PDF
    We prove several theorems characterizing the existence of homological error correction codes both classically and quantumly. Not every classical code is homological, but we find a family of classical homological codes saturating the Hamming bound. In the quantum case, we show that for non-orientable surfaces it is impossible to construct homological codes based on qudits of dimension D>2D>2, while for orientable surfaces with boundaries it is possible to construct them for arbitrary dimension DD. We give a method to obtain planar homological codes based on the construction of quantum codes on compact surfaces without boundaries. We show how the original Shor's 9-qubit code can be visualized as a homological quantum code. We study the problem of constructing quantum codes with optimal encoding rate. In the particular case of toric codes we construct an optimal family and give an explicit proof of its optimality. For homological quantum codes on surfaces of arbitrary genus we also construct a family of codes asymptotically attaining the maximum possible encoding rate. We provide the tools of homology group theory for graphs embedded on surfaces in a self-contained manner.Comment: Revtex4 fil

    Rigidity of spherical codes

    Full text link
    A packing of spherical caps on the surface of a sphere (that is, a spherical code) is called rigid or jammed if it is isolated within the space of packings. In other words, aside from applying a global isometry, the packing cannot be deformed. In this paper, we systematically study the rigidity of spherical codes, particularly kissing configurations. One surprise is that the kissing configuration of the Coxeter-Todd lattice is not jammed, despite being locally jammed (each individual cap is held in place if its neighbors are fixed); in this respect, the Coxeter-Todd lattice is analogous to the face-centered cubic lattice in three dimensions. By contrast, we find that many other packings have jammed kissing configurations, including the Barnes-Wall lattice and all of the best kissing configurations known in four through twelve dimensions. Jamming seems to become much less common for large kissing configurations in higher dimensions, and in particular it fails for the best kissing configurations known in 25 through 31 dimensions. Motivated by this phenomenon, we find new kissing configurations in these dimensions, which improve on the records set in 1982 by the laminated lattices.Comment: 39 pages, 8 figure
    corecore