416 research outputs found

    On covering expander graphs by Hamilton cycles

    Full text link
    The problem of packing Hamilton cycles in random and pseudorandom graphs has been studied extensively. In this paper, we look at the dual question of covering all edges of a graph by Hamilton cycles and prove that if a graph with maximum degree Δ\Delta satisfies some basic expansion properties and contains a family of (1o(1))Δ/2(1-o(1))\Delta/2 edge disjoint Hamilton cycles, then there also exists a covering of its edges by (1+o(1))Δ/2(1+o(1))\Delta/2 Hamilton cycles. This implies that for every α>0\alpha >0 and every pnα1p \geq n^{\alpha-1} there exists a covering of all edges of G(n,p)G(n,p) by (1+o(1))np/2(1+o(1))np/2 Hamilton cycles asymptotically almost surely, which is nearly optimal.Comment: 19 pages. arXiv admin note: some text overlap with arXiv:some math/061275

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Sharp threshold for embedding combs and other spanning trees in random graphs

    Full text link
    When knk|n, the tree Combn,k\mathrm{Comb}_{n,k} consists of a path containing n/kn/k vertices, each of whose vertices has a disjoint path length k1k-1 beginning at it. We show that, for any k=k(n)k=k(n) and ϵ>0\epsilon>0, the binomial random graph G(n,(1+ϵ)logn/n)\mathcal{G}(n,(1+\epsilon)\log n/ n) almost surely contains Combn,k\mathrm{Comb}_{n,k} as a subgraph. This improves a recent result of Kahn, Lubetzky and Wormald. We prove a similar statement for a more general class of trees containing both these combs and all bounded degree spanning trees which have at least ϵn/log9n\epsilon n/ \log^9n disjoint bare paths length log9n\lceil\log^9 n\rceil. We also give an efficient method for finding large expander subgraphs in a binomial random graph. This allows us to improve a result on almost spanning trees by Balogh, Csaba, Pei and Samotij.Comment: 20 page

    Hamilton decompositions of regular expanders: applications

    Get PDF
    In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This verified a conjecture of Kelly from 1968. In this paper, we derive a number of further consequences of our result on robust outexpanders, the main ones are the following: (i) an undirected analogue of our result on robust outexpanders; (ii) best possible bounds on the size of an optimal packing of edge-disjoint Hamilton cycles in a graph of minimum degree d for a large range of values for d. (iii) a similar result for digraphs of given minimum semidegree; (iv) an approximate version of a conjecture of Nash-Williams on Hamilton decompositions of dense regular graphs; (v) the observation that dense quasi-random graphs are robust outexpanders; (vi) a verification of the `very dense' case of a conjecture of Frieze and Krivelevich on packing edge-disjoint Hamilton cycles in random graphs; (vii) a proof of a conjecture of Erdos on the size of an optimal packing of edge-disjoint Hamilton cycles in a random tournament.Comment: final version, to appear in J. Combinatorial Theory

    Optimal path and cycle decompositions of dense quasirandom graphs

    Get PDF
    Motivated by longstanding conjectures regarding decompositions of graphs into paths and cycles, we prove the following optimal decomposition results for random graphs. Let 0<p<10<p<1 be constant and let GGn,pG\sim G_{n,p}. Let odd(G)odd(G) be the number of odd degree vertices in GG. Then a.a.s. the following hold: (i) GG can be decomposed into Δ(G)/2\lfloor\Delta(G)/2\rfloor cycles and a matching of size odd(G)/2odd(G)/2. (ii) GG can be decomposed into max{odd(G)/2,Δ(G)/2}\max\{odd(G)/2,\lceil\Delta(G)/2\rceil\} paths. (iii) GG can be decomposed into Δ(G)/2\lceil\Delta(G)/2\rceil linear forests. Each of these bounds is best possible. We actually derive (i)--(iii) from `quasirandom' versions of our results. In that context, we also determine the edge chromatic number of a given dense quasirandom graph of even order. For all these results, our main tool is a result on Hamilton decompositions of robust expanders by K\"uhn and Osthus.Comment: Some typos from the first version have been correcte
    corecore