1,254 research outputs found

    Intercomparison of the northern hemisphere winter mid-latitude atmospheric variability of the IPCC models

    Full text link
    We compare, for the overlapping time frame 1962-2000, the estimate of the northern hemisphere (NH) mid-latitude winter atmospheric variability within the XX century simulations of 17 global climate models (GCMs) included in the IPCC-4AR with the NCEP and ECMWF reanalyses. We compute the Hayashi spectra of the 500hPa geopotential height fields and introduce an integral measure of the variability observed in the NH on different spectral sub-domains. Only two high-resolution GCMs have a good agreement with reanalyses. Large biases, in most cases larger than 20%, are found between the wave climatologies of most GCMs and the reanalyses, with a relative span of around 50%. The travelling baroclinic waves are usually overestimated, while the planetary waves are usually underestimated, in agreement with previous studies performed on global weather forecasting models. When comparing the results of various versions of similar GCMs, it is clear that in some cases the vertical resolution of the atmosphere and, somewhat unexpectedly, of the adopted ocean model seem to be critical in determining the agreement with the reanalyses. The GCMs ensemble is biased with respect to the reanalyses but is comparable to the best 5 GCMs. This study suggests serious caveats with respect to the ability of most of the presently available GCMs in representing the statistics of the global scale atmospheric dynamics of the present climate and, a fortiori, in the perspective of modelling climate change.Comment: 39 pages, 8 figures, 2 table

    Domain-specific implementation of high-order Discontinuous Galerkin methods in spherical geometry

    Get PDF
    In recent years, domain-specific languages (DSLs) have achieved significant success in large-scale efforts to reimplement existing meteorological models in a performance portable manner. The dynamical cores of these models are based on finite difference and finite volume schemes, and existing DSLs are generally limited to supporting only these numerical methods. In the meantime, there have been numerous attempts to use high-order Discontinuous Galerkin (DG) methods for atmospheric dynamics, which are currently largely unsupported in main-stream DSLs. In order to link these developments, we present two domain-specific languages which extend the existing GridTools (GT) ecosystem to high-order DG discretization. The first is a C++-based DSL called G4GT, which, despite being no longer supported, gave us the impetus to implement extensions to the subsequent Python-based production DSL called GT4Py to support the operations needed for DG solvers. As a proof of concept, the shallow water equations in spherical geometry are implemented in both DSLs, thus providing a blueprint for the application of domain-specific languages to the development of global atmospheric models. We believe this is the first GPU-capable DSL implementation of DG in spherical geometry. The results demonstrate that a DSL designed for finite difference/volume methods can be successfully extended to implement a DG solver, while preserving the performance-portability of the DSL.ISSN:0010-4655ISSN:1879-294

    ICON-O: The Ocean Component of the ICON Earth System Model - Global simulation characteristics and local telescoping capability

    Get PDF
    Abstract We describe the ocean general circulation model ICON-O of the Max Planck Institute for Meteorology, which forms the ocean-sea ice component of the Earth system model ICON-ESM. ICON-O relies on innovative structure-preserving finite volume numerics. We demonstrate the fundamental ability of ICON-O to simulate key features of global ocean dynamics at both uniform and non-uniform resolution. Two experiments are analyzed and compared with observations, one with a nearly uniform and eddy-rich resolution of ?10?km and another with a telescoping configuration whose resolution varies smoothly from globally ?80?km to ?10?km in a focal region in the North Atlantic. Our results show first, that ICON-O on the nearly uniform grid simulates an ocean circulation that compares well with observations and second, that ICON-O in its telescope configuration is capable of reproducing the dynamics in the focal region over decadal time scales at a fraction of the computational cost of the uniform-grid simulation. The telescopic technique offers an alternative to the established regionalization approaches. It can be used either to resolve local circulation more accurately or to represent local scales that cannot be simulated globally while remaining within a global modeling framework

    Global Modeling and Data Assimilation

    Get PDF
    A detailed description of the development of the tangent linear model (TLM) and its adjoint model of the Relaxed Arakawa-Schubert moisture parameterization package used in the NASA GEOS-1 C-Grid GCM (Version 5.2) is presented. The notational conventions used in the TLM and its adjoint codes are described in detail

    Discrete Second Order Adjoints in Atmospheric Chemical Transport Modeling

    Get PDF
    Atmospheric chemical transport models (CTMs) are essential tools for the study of air pollution, for environmental policy decisions, for the interpretation of observational data, and for producing air quality forecasts. Many air quality studies require sensitivity analyses, i.e., the computation of derivatives of the model output with respect to model parameters. The derivatives of a cost functional (defined on the model output) with respect to a large number of model parameters can be calculated efficiently through adjoint sensitivity analysis. While the traditional (first order) adjoint models give the gradient of the cost functional with respect to parameters, second order adjoint models give second derivative information in the form of products between the Hessian of the cost functional and a user defined vector. In this paper we discuss the mathematical foundations of the discrete second order adjoint sensitivity method and present a complete set of computational tools for performing second order sensitivity studies in three-dimensional atmospheric CTMs. The tools include discrete second order adjoints of Runge Kutta and of Rosenbrock time stepping methods for stiff equations together with efficient implementation strategies. Numerical examples illustrate the use of these computational tools in important applications like sensitivity analysis, optimization, uncertainty quantification, and the calculation of directions of maximal error growth in three-dimensional atmospheric CTMs

    Advanced Method for Forecasting and Warning of Severe Convective Weather and Local-scale Hazards

    Get PDF
    Hurricane Ida ferociously affected many south-eastern and eastern parts of the United States, making it one of the strongest hurricanes in recent years. Advanced forecast and warning tool has been used to track the path of the ex-Hurricane, Ida, as it left New Orleans on its way towards the northeast, accurately predicting significant supercell development above New York City on September 01, 2021. This advanced method accurately detected the area with the highest possible level of convective instability with 24-h lead time and even Level 5, devised in the categorical outlooks legend of the system. Therefore, an extreme level implied a very high probability of the local-scale hazard occurring above the NYC. Cloud model output fields (updrafts and downdrafts, wind shear, near-surface convergence, the vertical component of relative vorticity) show the rapid development of a strong supercell storm with rotating updrafts and a mesocyclone. The characteristic hook-shaped echo signature visible in the reflectivity patterns indicates a signal for a highly precipitable (HP) supercell with the possibility of tornado initiation. Open boundary conditions represent a good basis for simulating a tornado that evolved from a supercell storm, initialized with initial data obtained from a real-time simulation in the period when the bow echo and tornado-like signature occurred. Тhe modeled results agree well with the observations

    ATMOL: A Domain-Specific Language for Atmospheric Modeling

    Get PDF
    This paper describes the design and implementation of ATMOL: a domain-specific language for the formulation and implementation of atmospheric models. ATMOL was developed in close collaboration with meteorologists at the Royal Netherlands Meteorological Institute (KNMI) to ensure ease of use, concise notation, and the adoptation of common notational conventions. ATMOL’s expressiveness allows the formulation of high-level and low-level model details as language constructs for problem refinement and code synthesis. The atmospheric models specified in ATMOL are translated into efficient numerical codes with CTADEL, a tool for symbolic manipulation and code synthesis
    • …
    corecore