1,405 research outputs found

    Distributed virtual environment scalability and security

    Get PDF
    Distributed virtual environments (DVEs) have been an active area of research and engineering for more than 20 years. The most widely deployed DVEs are network games such as Quake, Halo, and World of Warcraft (WoW), with millions of users and billions of dollars in annual revenue. Deployed DVEs remain expensive centralized implementations despite significant research outlining ways to distribute DVE workloads. This dissertation shows previous DVE research evaluations are inconsistent with deployed DVE needs. Assumptions about avatar movement and proximity - fundamental scale factors - do not match WoW’s workload, and likely the workload of other deployed DVEs. Alternate workload models are explored and preliminary conclusions presented. Using realistic workloads it is shown that a fully decentralized DVE cannot be deployed to today’s consumers, regardless of its overhead. Residential broadband speeds are improving, and this limitation will eventually disappear. When it does, appropriate security mechanisms will be a fundamental requirement for technology adoption. A trusted auditing system (“Carbon”) is presented which has good security, scalability, and resource characteristics for decentralized DVEs. When performing exhaustive auditing, Carbon adds 27% network overhead to a decentralized DVE with a WoW-like workload. This resource consumption can be reduced significantly, depending upon the DVE’s risk tolerance. Finally, the Pairwise Random Protocol (PRP) is described. PRP enables adversaries to fairly resolve probabilistic activities, an ability missing from most decentralized DVE security proposals. Thus, this dissertations contribution is to address two of the obstacles for deploying research on decentralized DVE architectures. First, lack of evidence that research results apply to existing DVEs. Second, the lack of security systems combining appropriate security guarantees with acceptable overhead

    Verifiable Encodings for Secure Homomorphic Analytics

    Full text link
    Homomorphic encryption, which enables the execution of arithmetic operations directly on ciphertexts, is a promising solution for protecting privacy of cloud-delegated computations on sensitive data. However, the correctness of the computation result is not ensured. We propose two error detection encodings and build authenticators that enable practical client-verification of cloud-based homomorphic computations under different trade-offs and without compromising on the features of the encryption algorithm. Our authenticators operate on top of trending ring learning with errors based fully homomorphic encryption schemes over the integers. We implement our solution in VERITAS, a ready-to-use system for verification of outsourced computations executed over encrypted data. We show that contrary to prior work VERITAS supports verification of any homomorphic operation and we demonstrate its practicality for various applications, such as ride-hailing, genomic-data analysis, encrypted search, and machine-learning training and inference.Comment: update authors, typos corrected, scheme update

    Causal Consistent Databases

    Get PDF
    Many consistency criteria have been considered in databases and the causal consistency is one of them. The causal consistency model has gained much attention in recent years because it provides ordering of relative operations. The causal consistency requires that all writes, which are potentially causally related, must be seen in the same order by all processes. The causal consistency is a weaker criteria than the sequential consistency, because there exists an execution, which is causally consistent but not sequentially consistent, however all executions satisfying the sequential consistency are also causally consistent. Furthermore, the causal consistency supports non-blocking operations; i.e. processes may complete read or write operations without waiting for global computation. Therefore, the causal consistency overcomes the primary limit of stronger criteria: communication latency. Additionally, several application semantics are precisely captured by the causal consistency, e.g. collaborative tools. In this paper, we review the state-of-the-art of causal consistent databases, discuss the features, functionalities and applications of the causal consistency model, and systematically compare it with other consistency models. We also discuss the implementation of causal consistency databases and identify limitations of the causal consistency model

    Cloud-edge hybrid applications

    Get PDF
    Many modern applications are designed to provide interactions among users, including multi- user games, social networks and collaborative tools. Users expect application response time to be in the order of milliseconds, to foster interaction and interactivity. The design of these applications typically adopts a client-server model, where all interac- tions are mediated by a centralized component. This approach introduces availability and fault- tolerance issues, which can be mitigated by replicating the server component, and even relying on geo-replicated solutions in cloud computing infrastructures. Even in this case, the client-server communication model leads to unnecessary latency penalties for geographically close clients and high operational costs for the application provider. This dissertation proposes a cloud-edge hybrid model with secure and ecient propagation and consistency mechanisms. This model combines client-side replication and client-to-client propagation for providing low latency and minimizing the dependency on the server infras- tructure, fostering availability and fault tolerance. To realize this model, this works makes the following key contributions. First, the cloud-edge hybrid model is materialized by a system design where clients maintain replicas of the data and synchronize in a peer-to-peer fashion, and servers are used to assist clients’ operation. We study how to bring most of the application logic to the client-side, us- ing the centralized service primarily for durability, access control, discovery, and overcoming internetwork limitations. Second, we dene protocols for weakly consistent data replication, including a novel CRDT model (∆-CRDTs). We provide a study on partial replication, exploring the challenges and fundamental limitations in providing causal consistency, and the diculty in supporting client- side replicas due to their ephemeral nature. Third, we study how client misbehaviour can impact the guarantees of causal consistency. We propose new secure weak consistency models for insecure settings, and algorithms to enforce such consistency models. The experimental evaluation of our contributions have shown their specic benets and limitations compared with the state-of-the-art. In general, the cloud-edge hybrid model leads to faster application response times, lower client-to-client latency, higher system scalability as fewer clients need to connect to servers at the same time, the possibility to work oine or disconnected from the server, and reduced server bandwidth usage. In summary, we propose a hybrid of cloud-and-edge which provides lower user-to-user la- tency, availability under server disconnections, and improved server scalability – while being ecient, reliable, and secure.Muitas aplicações modernas são criadas para fornecer interações entre utilizadores, incluindo jogos multiutilizador, redes sociais e ferramentas colaborativas. Os utilizadores esperam que o tempo de resposta nas aplicações seja da ordem de milissegundos, promovendo a interação e interatividade. A arquitetura dessas aplicações normalmente adota um modelo cliente-servidor, onde todas as interações são mediadas por um componente centralizado. Essa abordagem apresenta problemas de disponibilidade e tolerância a falhas, que podem ser mitigadas com replicação no componente do servidor, até com a utilização de soluções replicadas geogracamente em infraestruturas de computação na nuvem. Mesmo neste caso, o modelo de comunicação cliente-servidor leva a penalidades de latência desnecessárias para clientes geogracamente próximos e altos custos operacionais para o provedor das aplicações. Esta dissertação propõe um modelo híbrido cloud-edge com mecanismos seguros e ecientes de propagação e consistência. Esse modelo combina replicação do lado do cliente e propagação de cliente para cliente para fornecer baixa latência e minimizar a dependência na infraestrutura do servidor, promovendo a disponibilidade e tolerância a falhas. Para realizar este modelo, este trabalho faz as seguintes contribuições principais. Primeiro, o modelo híbrido cloud-edge é materializado por uma arquitetura do sistema em que os clientes mantêm réplicas dos dados e sincronizam de maneira ponto a ponto e onde os servidores são usados para auxiliar na operação dos clientes. Estudamos como trazer a maior parte da lógica das aplicações para o lado do cliente, usando o serviço centralizado principalmente para durabilidade, controlo de acesso, descoberta e superação das limitações inter-rede. Em segundo lugar, denimos protocolos para replicação de dados fracamente consistentes, incluindo um novo modelo de CRDTs (∆-CRDTs). Fornecemos um estudo sobre replicação parcial, explorando os desaos e limitações fundamentais em fornecer consistência causal e a diculdade em suportar réplicas do lado do cliente devido à sua natureza efémera. Terceiro, estudamos como o mau comportamento da parte do cliente pode afetar as garantias da consistência causal. Propomos novos modelos seguros de consistência fraca para congurações inseguras e algoritmos para impor tais modelos de consistência. A avaliação experimental das nossas contribuições mostrou os benefícios e limitações em comparação com o estado da arte. Em geral, o modelo híbrido cloud-edge leva a tempos de resposta nas aplicações mais rápidos, a uma menor latência de cliente para cliente e à possibilidade de trabalhar oine ou desconectado do servidor. Adicionalmente, obtemos uma maior escalabilidade do sistema, visto que menos clientes precisam de estar conectados aos servidores ao mesmo tempo e devido à redução na utilização da largura de banda no servidor. Em resumo, propomos um modelo híbrido entre a orla (edge) e a nuvem (cloud) que fornece menor latência entre utilizadores, disponibilidade durante desconexões do servidor e uma melhor escalabilidade do servidor – ao mesmo tempo que é eciente, conável e seguro

    Eventual Consistent Databases: State of the Art

    Get PDF
    One of the challenges of cloud programming is to achieve the right balance between the availability and consistency in a distributed database. Cloud computing environments, particularly cloud databases, are rapidly increasing in importance, acceptance and usage in major applications, which need the partition-tolerance and availability for scalability purposes, but sacrifice the consistency side (CAP theorem). In these environments, the data accessed by users is stored in a highly available storage system, thus the use of paradigms such as eventual consistency became more widespread. In this paper, we review the state-of-the-art database systems using eventual consistency from both industry and research. Based on this review, we discuss the advantages and disadvantages of eventual consistency, and identify the future research challenges on the databases using eventual consistency

    Transactions and data management in NoSQL cloud databases

    Get PDF
    NoSQL databases have become the preferred option for storing and processing data in cloud computing as they are capable of providing high data availability, scalability and efficiency. But in order to achieve these attributes, NoSQL databases make certain trade-offs. First, NoSQL databases cannot guarantee strong consistency of data. They only guarantee a weaker consistency which is based on eventual consistency model. Second, NoSQL databases adopt a simple data model which makes it easy for data to be scaled across multiple nodes. Third, NoSQL databases do not support table joins and referential integrity which by implication, means they cannot implement complex queries. The combination of these factors implies that NoSQL databases cannot support transactions. Motivated by these crucial issues this thesis investigates into the transactions and data management in NoSQL databases. It presents a novel approach that implements transactional support for NoSQL databases in order to ensure stronger data consistency and provide appropriate level of performance. The novelty lies in the design of a Multi-Key transaction model that guarantees the standard properties of transactions in order to ensure stronger consistency and integrity of data. The model is implemented in a novel loosely-coupled architecture that separates the implementation of transactional logic from the underlying data thus ensuring transparency and abstraction in cloud and NoSQL databases. The proposed approach is validated through the development of a prototype system using real MongoDB system. An extended version of the standard Yahoo! Cloud Services Benchmark (YCSB) has been used in order to test and evaluate the proposed approach. Various experiments have been conducted and sets of results have been generated. The results show that the proposed approach meets the research objectives. It maintains stronger consistency of cloud data as well as appropriate level of reliability and performance
    corecore