24 research outputs found

    Gap functions and error bounds for variational-hemivariational inequalities

    Get PDF
    In this paper we investigate the gap functions and regularized gap functions for a class of variational–hemivariational inequalities of elliptic type. First, based on regularized gap functions introduced by Yamashita and Fukushima, we establish some regularized gap functions for the variational–hemivariational inequalities. Then, the global error bounds for such inequalities in terms of regularized gap functions are derived by using the properties of the Clarke generalized gradient. Finally, an application to a stationary nonsmooth semipermeability problem is given to illustrate our main results

    Hamilton’s Principle as Variational Inequality for Mechanical Systems with Impact

    Get PDF
    International audienceThe classical form of Hamilton's principle holds for conservative systems with perfect bilateral constraints. Several attempts have been made in literature to generalise Hamilton's principle for mechanical systems with perfect unilateral constraints involving impulsive motion. This has led to a number of different variants of Hamilton's principle, some expressed as variational inequalities. Up to now, the connection between these different principles has been missing. The aim of this paper is to put these different principles of Hamilton in a unified framework by using the concept of weak and strong extrema. The difference between weak and strong variations of the motion is explained in detail. Each type of variation leads to a variant of the principle of Hamilton in the form of a variational inequality. The conclusion of the paper is that each type of variation leads to different necessary and sufficient conditions on the impact law. The principle of Hamilton with strong variations is valid for perfect unilateral constraints with a completely elastic impact law, whereas the weak form of Hamilton's principle only requires perfect unilateral constraints and no condition on the energy

    AdaBiM: An adaptive proximal gradient method for structured convex bilevel optimization

    Full text link
    Bilevel optimization is a comprehensive framework that bridges single- and multi-objective optimization. It encompasses many general formulations, including, but not limited to, standard nonlinear programs. This work demonstrates how elementary proximal gradient iterations can be used to solve a wide class of convex bilevel optimization problems without involving subroutines. Compared to and improving upon existing methods, ours (1) can handle a wider class of problems, including nonsmooth terms in the upper and lower level problems, (2) does not require strong convexity or global Lipschitz gradient continuity assumptions, and (3) provides a systematic adaptive stepsize selection strategy, allowing for the use of large stepsizes while being insensitive to the choice of parameters

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin

    Book reviews

    Get PDF
    corecore