1,530 research outputs found

    Multiplicative controllability for nonlinear degenerate parabolic equations between sign-changing states

    Full text link
    In this paper we study the global approximate multiplicative controllability for nonlinear degenerate parabolic Cauchy problems. In particular, we consider a one-dimensional semilinear degenerate reaction-diffusion equation in divergence form governed via the coefficient of the \-reaction term (bilinear or multiplicative control). The above one-dimensional equation is degenerate since the diffusion coefficient is positive on the interior of the spatial domain and vanishes at the boundary points. Furthermore, two different kinds of degenerate diffusion coefficient are distinguished and studied in this paper: the weakly degenerate case, that is, if the reciprocal of the diffusion coefficient is summable, and the strongly degenerate case, that is, if that reciprocal isn't summable. In our main result we show that the above systems can be steered from an initial continuous state that admits a finite number of points of sign change to a target state with the same number of changes of sign in the same order. Our method uses a recent technique introduced for uniformly parabolic equations employing the shifting of the points of sign change by making use of a finite sequence of initial-value pure diffusion pro\-blems. Our interest in degenerate reaction-diffusion equations is motivated by the study of some \-energy balance models in climatology (see, e.g., the Budyko-Sellers model) and some models in population genetics (see, e.g., the Fleming-Viot model).Comment: arXiv admin note: text overlap with arXiv:1510.0420

    Numerical controllability of the wave equation through primal methods and Carleman estimates

    Get PDF
    This paper deals with the numerical computation of boundary null controls for the 1D wave equation with a potential. The goal is to compute an approximation of controls that drive the solution from a prescribed initial state to zero at a large enough controllability time. We do not use in this work duality arguments but explore instead a direct approach in the framework of global Carleman estimates. More precisely, we consider the control that minimizes over the class of admissible null controls a functional involving weighted integrals of the state and of the control. The optimality conditions show that both the optimal control and the associated state are expressed in terms of a new variable, the solution of a fourth-order elliptic problem defined in the space-time domain. We first prove that, for some specific weights determined by the global Carleman inequalities for the wave equation, this problem is well-posed. Then, in the framework of the finite element method, we introduce a family of finite-dimensional approximate control problems and we prove a strong convergence result. Numerical experiments confirm the analysis. We complete our study with several comments

    Model reduction of controlled Fokker--Planck and Liouville-von Neumann equations

    Full text link
    Model reduction methods for bilinear control systems are compared by means of practical examples of Liouville-von Neumann and Fokker--Planck type. Methods based on balancing generalized system Gramians and on minimizing an H2-type cost functional are considered. The focus is on the numerical implementation and a thorough comparison of the methods. Structure and stability preservation are investigated, and the competitiveness of the approaches is shown for practically relevant, large-scale examples
    • …
    corecore